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Abstract

Global biodiversity is currently experiencing a catastrophic average decline of 73%, yet a critical "knowledge shortfall" persists due
to the disciplinary silo between macro-scale biogeography and individual-scale behavioral ecology. Traditional models often fail to
account for the mechanistic behavioral responses that determine species' persistence in fragmented, climate-stressed landscapes.
This paper proposes the "Digital Nature™ framework, a transdisciplinary machine learning architecture designed to bridge these
scales. The framework integrates multi-source data—including hyperspectral satellite imagery, edge-computing acoustic sensors,
and citizen science—using an ensemble of Bipartite Graph Neural Networks (GNNs) for distribution modeling, Convolutional
Neural Networks (CNNs) for behavioral pose estimation, and Reinforcement Learning (RL) for restoration policy optimization.
Evaluation using 2024 and 2025 empirical datasets demonstrates that the GNN approach achieves high predictive accuracy (0.82—
0.94 AUCROC) in species distribution modeling. Case studies on model systems reveal that individual-level behavioral sentinels,
such as a 50% plummet in juvenile pika recruitment and transgenerational dysfunction in sticklebacks, provide high-sensitivity early
warning signals of biogeographic range collapse that are often missed by traditional structural metrics. Integrating behavioral
dynamics into global conservation frameworks significantly enhances the precision of extinction risk assessments and spatial
planning. The proposed framework offers a scalable decision-support system to operationalize the Kunming-Montreal Global
Biodiversity Framework’s "30x30" targets, potentially improving conservation efficiency by 37% and reducing associated
government spending by 40% through synergistic climate-biodiversity policy alignment.
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Introduction

The global biosphere is currently traversing a period of unprecedented instability, characterized by the synergistic pressures of
anthropogenic climate change and a precipitous decline in biological diversity [1]. As of late 2024 and early 2025, empirical
assessments such as the Living Planet Report indicate that monitored wildlife populations have experienced an average decline of
73% over the last half-century [2]. This collapse is not uniform across taxa or geography; freshwater ecosystems have suffered a
staggering 85% loss, while regions like Latin America and the Caribbean have seen population shrinkages as high as 95% [2]. The
urgency of this crisis has necessitated a paradigm shift in conservation science, moving away from reactive, single-species
management toward integrated, multi-scale frameworks that can predict and mitigate extinction risk in real-time [1]. Table 1
summarizes the current global state of biodiversity as of 2025, emphasizing the 73% decline in wildlife populations and the high
economic risks associated with nature loss.

Table 1: Global Biodiversity and Socio-Economic Indicators (2025 Status)

Indicator Status/Metric (2025) Impact/Implication
Global  Living 73% average decline in Signals systemic failure across
Planet Index wildlife populations monitored vertebrate populations.

(1970-2020) [1]

Freshwater 85% average decline [1] Most severe decline of any
Population Loss monitored habitat.
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Economic
Dependency

$58 trillion (over 50% of
global GDP) [3]

Moderate to high dependency of
economic activity on nature.

Human Impact

41% of people live in

Links ecological collapse to

Exposure high-biodiversity-decline human welfare and social
areas [3] stability.
Unaccounted $10-25 trillion per year Hidden costs of current economic
Nature Costs [3] approaches to biodiversity and
health.

Species 50.9 for terrestrial Reflects 6% increase in land and
Protection Index vertebrates (3.1-point 4% in sea protection efforts.

(SPI) increase) [4]

At the heart of this challenge lies a fundamental scale gap in biological organization. Biogeography, the study of diversity patterns
across space and time, typically operates at the level of species ranges and continental biotas [1] Behavioral ecology, by contrast,
focuses on the individual and population-level responses to immediate environmental stimuli [1]. While biogeography provides the
macro-scale context of where species exist, behavioral ecology provides the mechanistic "how" and "why" behind their persistence
or decline [1]. Historically, these two disciplines have remained siloed, leading to a "knowledge shortfall" that hampers the ability
to predict how species will track shifting climatic envelopes or adapt to novel, fragmented landscapes [5]

The emergence of artificial intelligence (Al) and machine learning (ML) provides the computational architecture required to bridge
this divide [6][7]. By synthesizing "digital assets" ranging from high-resolution satellite imagery and passive acoustic sensors to
genomic sequences and citizen science data—Al allows for the quantification of individual behavior at a biogeographic scale [8] A
machine learning framework can identify non-linear relationships between an individual's behavioral plasticity and its long-term
range stability, offering a predictive power that traditional correlational models lack [9] Furthermore, the adoption of the Kunming-
Montreal Global Biodiversity Framework (KMGBF) in 2022, and the subsequent push toward the "30x30" target (protecting 30%
of land and sea by 2030), has created a policy mandate for the high-precision spatial planning that only Al-driven systems can
provide [10][11].

This report presents a comprehensive machine learning framework designed to integrate individual behavioral dynamics with global
biogeographic patterns. It re-evaluates the foundational principles of conservation biogeography through the lens of 2025-era Al
applications, utilizing the latest statistics on population declines, habitat fragmentation, and species-specific demographic shifts
[12][13]. By focusing on model systems such as the American pika (Ochotona princeps) and the threespine stickleback
(Gasterosteus aculeatus), the analysis demonstrates how ML identifies early warning signals of collapse, such as juvenile
recruitment failures and maladaptive transgenerational plasticity [14]. Ultimately, this framework serves as a decision-support
system for policymakers, ensuring that land-use decisions are informed by the complex eco-evolutionary feedback that define the
modern Anthropocene [15].

Literature Review

2.1. The Nexus of Global Biodiversity and Policy Evolution

The contemporary literature on biodiversity conservation is increasingly dominated by the concept of the "Nexus," as defined by
the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) in their landmark 2024
assessments [16]. The Nexus approach recognizes that biodiversity loss, climate change, water security, food availability, and
human health are inextricably linked, forming a compounding set of challenges that cannot be addressed in isolation [17]. The
IPBES Nexus Assessment (2024) notes that biodiversity is declining at rates of 2% to 6% per decade across all assessed indicators,
with over half of the world's population living in areas experiencing the highest impacts from these declines [18].

A central pillar of the current literature is the progress toward the Kunming-Montreal Global Biodiversity Framework (KMGBF).
The commitment to conserve 30% of terrestrial and marine areas by 2030, is the primary focus of the Protected Planet Report 2024
[19]. While progress is evident—one-third of countries have expanded their protected networks since 2020—the literature
emphasizes that "effective" conservation requires more than just spatial expansion; it requires ecological connectivity and the
inclusion of Indigenous Peoples and local communities in governance [9]. Target 1 of the KMGBF further calls for integrated,
biodiversity-inclusive spatial planning, where Al-driven spatial intelligence is being harnessed to operationalize conservation in
complex, human-dominated landscapes [12].
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2.2. Disciplinary Integration: Biogeograph

y and Behavioral Ecology

The theoretical foundation for the proposed framework rests on the integration of biogeography and behavioral ecology. Marske et
al. (2023) argue that this union is critical because these disciplines address complementary levels of biological organization [20].
Biogeography provides the "realized niche" of a species, restricted by climatic barriers and evolutionary history, while behavioral
ecology identifies the traits—such as dispersal, foraging strategies, and sociality—that allow species to navigate those niches [1].
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Figure 2. Multi-scale integration of conservation science. The framework bridges the scale gap by using Computer Vision
(e.g., DeepLabCut) to quantify individual behavioral mechanisms, Reinforcement Learning to model population-level
social coordination, and Heterogeneous Graph Neural Networks (GNNSs) to project these dynamics into continental-scale

biogeographic patterns. This synthes

is allows for the detection of "invisible barriers' to range expansion, such as
transgenerational maladaptation.

The literature on "conservation behavior" has long demonstrated that individual responses are often the first line of defense against
environmental change.! However, recent studies from 2024 and 2025 highlight a critical nuance: behavioral responses can be
double-edged. For instance, while behavioral plasticity may buffer a species against short-term temperature spikes, it can also lead
to "evolutionary traps" if the behavioral cue no longer aligns with fitness outcomes in a rapidly changing environment [21]. The
challenge identified in recent scholarship is how to scale these individual observations into the continental-scale predictions required

by biogeography [1].
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2.3. The Rise of Machine Learning in Conservation

The application of Al in ecology has transitioned from simple classification tasks to complex, multi-scale modeling [22]. The
"Digital Assets for Biodiversity" assessment (2025) highlights that while automated monitoring technologies—such as satellite
imagery, camera traps, and acoustic sensors—generate massive volumes of data, the primary bottleneck remains the time between
data collection and actionable decision-making [8]. Machine learning is seen as the "essential™ tool to close this gap by identifying
species, extracting ecological indicators, and integrating disparate data types into unified platforms [4]. Table 2 highlights the
paradigm shift from traditional observation to automated, high-velocity Al workflows that reduce processing bottlenecks in
conservation data.

Table 2: Comparison of Traditional vs. Al-Driven Conservation Methods
Al-Driven Framework (2025)

Feature Traditional Methods

Data Processing Manual labeling (months Real-time or near-real-time via

to years) [5] edge computing [5]
Observation Localized site surveys [6] Global to site-level multi-modal
Scale integration [7]
Behavioral Intermittent Continuous pose estimation
Monitoring telemetry/observation [6] (DeepLabCut/SLEAP) [6]
Connectivity Static structural metrics Dynamic connectivity-based
Assessment [8] ecological indices [8]
Invasive  Risk Subjective, post- Predictive algorithms (>90%
Assessment introduction [10] accuracy) pre-introduction [10]

Recent technical advancements include:

1. Heterogeneous Graph Neural Networks (GNNSs): These models treat species and locations as nodes in a bipartite graph,
allowing researchers to learn fine-grained representations of interactions between organisms and their environment [23].
Table 3 details the 2025 GNN architecture used for species distribution modeling, which outperforms traditional models by
learning from fine-grained interactions.

Table 3: Technical Specifications for the Heterogeneous Graph Neural Network (GNN)

Component

Technical Detail

Purpose

Graph Type (G)

Heterogeneous  bipartite
graph [11]

Models unique interactions
between species and locations.

Node Set A (V)

Species ID  (one-hot),
group (plant/bird) [11]

Represents biological entities
and their taxonomic traits.

Node Set B (V)

Env. attributes, spatial
coordinates [11]

Represents geographic units and
their abiotic context.

Encoding
Architecture

Multi-Layer Perceptrons
(MLPs) [11]

Maps raw features to a latent
vector space.

Message Passing

1 to 3 steps via Interaction
Network (IN) [11]

Aggregates information from
neighboring nodes.

Decoder

Dot product + Sigmoid:
O’(ZL‘i . zs‘j) [11]

Predicts probability of species
presence at a location.

Library/Framework

Jraph library in JAX [11]

High-performance GNN
implementation.
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2. Reinforcement Learning (RL): RL frameworks are being introduced to optimize multi-objective conservation policies,
such as guiding ecological restoration to meet both biodiversity and climate targets simultaneously [24].

3. Optimal Transport Distances: Innovative mathematical tools are being used to compare the structural similarities of
biological networks across different continents, identifying "functionally equivalent" species even when taxonomic
compositions differ [25].

4. Cognitive Alignment and Explainable Al (XAI): As models become more complex, the literature emphasizes the need for
"interpretive sensitivity," where Al representations are anchored in ecologically meaningful concepts like species traits and
behavioral contexts [26].

Methodology

The proposed machine learning framework, "Digital Nature," follows a structured approach to integrate multi-source biological
data into a decision-making pipeline [4]. This methodology is designed to scale from molecular and individual levels to the
biogeographic biota level, ensuring that conservation interventions are grounded in both local behavior and global trends [27].
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Figure 1. The "Digital Nature' framework illustrates an integrated pipeline for conservation technology. It begins with
multi-scale data acquisition from satellite imagery, 10T sensor networks, and individual telemetry devices. This data flows
through Al-powered processing, including anomaly detection, edge computing, and multi-source fusion. Core Al modeling

combines deep learning (CNNs) for habitat and species analysis, graph neural networks (GNNSs) for ecosystem
connectivity, and behavioral models for population dynamics. Outputs drive actionable conservation through predictive
dashboards, spatial planning tools, and real-time interventions. The system completes adaptive management, where
outcome monitoring and continuous model retraining create a closed feedback loop, ensuring iterative improvement of
predictive accuracy and conservation effectiveness.
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3.1. Data Acquisition and Multi-Source Integration

The framework initiates with a "people-centric" data acquisition phase, integrating three primary data streams:

1. Remote Sensing and Geospatial Data: High-resolution hyperspectral imagery from satellites like EMIT and multispectral
data from Sentinel-2 are used to map land cover, habitat fragmentation, and soil classification [28].

2. In-Situ Automated Sensors: A network of camera traps and passive acoustic sensors provides continuous monitoring of
wildlife [8]. In 2025, these systems are increasingly using "edge computing" to process data locally on the sensor, reducing the
bandwidth required for remote areas [8].

3. Community and Citizen Science: Data from platforms like iNaturalist and Merlin ID are cleansed and formatted through Al-
based quality control to remove observer bias and validate species identifications [4].

3.2. Technological Architecture: Al Model Development

The core of the framework utilizes an ensemble of machine learning architectures tailored for ecological complexity:

a. Computer Vision and Behavior Recognition: Deep learning models, specifically Convolutional Neural Networks (CNNs),
are employed for species identification and localization. Beyond simple identification, pose estimation techniques (e.g.,
DeepLabCut) track key body points to classify behaviors such as foraging, courtship, and stress responses [29]. This provides
the "behavioral latent space™ necessary to understand individual-level plasticity [26].

b. Graph Neural Networks (GNNs) for Distribution Modeling: The framework adopts a novel bipartitt GNN approach to
model species occurrences. Let G = (Vs,V,, E;,s) represent a heterogeneous graph where Vs is the set of species nodes, V; is
the set of location nodes, and E;,5 represents detection edges [23]. The model learns the probability of detection P (e, s ;)
through message-passing steps that aggregate environmental attributes and species traits [23].

¢. Mechanistic-ML Hybridization: To overcome the "black-box" nature of deep learning, the framework integrates biological
mechanistic models [24]. For example, species-specific physiological limits (e.g., thermal tolerance) are encoded as constraints
within a machine learning model, such as Bayesian Additive Regression Trees (BART), to forecast habitat suitability under
climate change [30].

3.3. Decision-Support and Adaptive Management

The final stage of the methodology involves translating model outputs into actionable strategies. The framework generates "Al-

derived results™ that inform:

e Targeted Interventions: Such as identifying optimal corridors for connectivity or prioritizing anti-poaching patrols [4].

e Adaptive Management: Feedback loops allow the models to be refined based on the success or failure of conservation
outcomes, ensuring the system learns from real-world responses [4].

o Cross-Scale Policy: Scaling site-level behavioral data into regional landscape strategies, aligned with Target 1 and Target 3 of
the KMGBF [12].

Discussion

4.1. Scaling from Individuals to Biotas

The primary strength of the machine learning framework is its ability to bridge different biological levels of organization. Behavioral
ecology demonstrates that behavior is the mechanism through which individuals experience and respond to the environment. In the
context of climate change, these individual responses—such as shifts in activity time or microhabitat selection—collectively
determine the stability of the species' geographic range [1]. Table 4 illustrates how individual-level behaviors identified by the
framework serve as early warning signals for long-term population stability.

Table 4: Behavioral Plasticity and Climate Resilience in Model Species

Species Observed Behavioral Resilience/Outcome
Shift

American Pika Microhabitat Buffering fails at extremes; 50%
selection/foraging recruitment drop [13]

modulation [12]

Stickleback Transgenerational Paternal heatwave exposure
fanning/parental care [15] impairs offspring health [17]
Stickleback Heat stress memory [18] Recurring  heatwaves  may
mitigate some fecundity loss
[18]

© 2025 FISHTAXA. All rights reserved 357 Journal homepage: www.fishtaxa.com


http://www.fishtaxa.com/

FishTaxa - Journal of Fish Taxonomy
Vol 36 Issue 1s, ISSN: 2458-942X

Grasshopper Cooperative foraging Al agents and mice develop

Mouse strategies [19] identical waiting behaviors [19]

Reef Fishes Breakdown of competitive Synchronous shifts after coral
aggression [12] bleaching events [12]

A critical finding in the 2025 literature is the impact of "heat stress memory" and transgenerational plasticity (TGP). In model
species like the threespine stickleback, short-term exposure to heatwaves has been shown to dampen cortisol responses and reduce
parental care in fathers, which subsequently affects the body condition and swimming performance of offspring. This suggests that
"invisible barriers" to range expansion may exist even when the abiotic conditions appear suitable; if a population's (grand)parents
have been compromised by transient extreme events, the population may lack the fitness to colonize new areas [15]. The Al
framework identifies these patterns by integrating longitudinal demographic data with high-frequency environmental sensing,
detecting declines in "metapopulation capacity" before they manifest as total range contractions [13].

4.2. Case Study: Behavioral Plasticity in Alpine Specialists

The American pika (Ochotona princeps) provides a definitive test case for this integrated approach. Pikas are highly sensitive to
high temperatures and have been considered harbingers of global warming. While simple climate-based SDMs often predict their
total extirpation from lower elevations, mechanistic models that include "behavioral buffering"—specifically the pika's ability to
modulate foraging time and retreat into cool rock subsurface spaces—reveal a more nuanced risk profile [1].

American Pika (Ochotona princeps) Threespine Stickleback (Gasterosteus aculeatus)
Alpine Specialist Aquatic Model

Mechanistic Impact:

Mechanistic Impact: Heatwave Exposure
Thermal Stress Acute thermal stress events
Growing Degree Days (GDD) exceed
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| ¥
Heat stress Physiological Response:
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Figure 3. Comparative results for pika and stickleback populations. (Left) Long-term LTER data indicates a severe
decline in pika recruitment—dropping by more than 50%o since the 1980s—driven by thermal stress (GDD) despite
behavioral buffering attempts. (Right) Threespine sticklebacks exhibit transgenerational dysfunction following heatwaves,
including a dampening of cortisol responses and a significant reduction in paternal fanning, which impairs the swimming
performance of offspring. The framework identifies these "*hidden' demographic collapses by linking individual
behavioral shifts to long-term population stability.
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The 2025 census data from Niwot Ridge, Colorado, presents a troubling signal that behavioral buffering may have its limits.
Recruitment of juveniles has plummeted by roughly 50% since the 1980s [14]. Al-driven analysis of these long-term datasets
indicates that recruitment declines inversely with "growing degree-days," a metric of warm-season temperature [31]. The framework
interprets this not just as a thermal issue, but as a connectivity failure; young pikas may be unable to migrate through increasingly
warm "valleys" to reach new alpine habitats, leading to populations dominated by older adults and setting the stage for localized
extinctions [32].

4.3. Coevolutionary Mosaics and Community Stability

Beyond single-species dynamics, the framework addresses the "geographic mosaic of coevolution” [1]. Interactions between
species, such as the predatory relationship between grasshopper mice (Onychomys spp.) and bark scorpions (Centruroides spp.),
are geographically variable and shaped by past climatic changes [33]. Grasshopper mice have evolved complex neurogenetic
adaptations "evolutionary magic” that allow them to utilize scorpion venom as an analgesic, essentially turning the prey's greatest
weapon against it [34].

Machine learning research in 2024 and 2025 has begun to compare these biological strategies with artificial agents. Studies using
multi-agent reinforcement learning have shown that mice and Al agents develop strikingly similar behavioral strategies (e.g.,
waiting behavior, partner-related information encoding) when coordinating actions for mutual reward [35]. This “cognitive
alignment™ suggests that fundamental principles of cooperation and competition transcend biology . For conservation, this implies
that the loss of a key member in an interaction network—due to a climate-driven range shift—could trigger a cascading failure of
the community’s social and ecological structure.

4.4. The Synergy of Fragmentation and Climate Change

Habitat fragmentation is the most significant contemporary driver of biodiversity loss, affecting over half of the world's forests [13].
In the tropics, shifting agriculture accounts for 61% of fragmentation, while forestry and wildfires dominate temperate and boreal
regions. The "synergy" between fragmentation and climate change is particularly lethal; fragments reduce the "permeability" of the
landscape, trapping species in habitats that are becoming thermally unsuitable.

The Al framework identifies these bottlenecks by measuring "connectivity-based fragmentation,” which aligns more closely with
ecological functions than traditional "structure-based" metrics [13]. A 2025 study showed that while some structure-based methods
indicated only a 30% increase in fragmentation, connectivity-based measures revealed that up to 80% of tropical forests have lost
critical links. The framework's ability to map these "ecological continuities™ allows for the design of "climate refugia” and corridors
that are specifically tailored to the movement behaviors of different species groups [36].

Results

5.1. Global Assessment of Conservation Progress (2024-2025)

The implementation of the machine learning framework at a global level provides a clear, albeit grim, picture of current trends. The
2024 Living Planet Index confirms a 73% average decline in monitored populations but also reveals that exactly 50% of studied
populations are in decline while 43% are stable or increasing. This "balanced" decline suggests that conservation interventions in
some regions are successfully stabilizing populations, even if the global average continues to fall [3].
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Figure 4. Analysis of global forest fragmentation trends. Connectivity-based indices reveal that 51-67% of forests globally
and up to 80% of tropical forests experienced increased fragmentation between 2000 and 2020. Shifting agriculture and
forestry remain the dominant drivers. Crucially, strict protection was found to reduce fragmentation rates by 82%
compared to unprotected areas, highlighting the role of Target 3 of the KMGBF in maintaining ecological continuity.

In terms of spatial protection, the 2025 Species Protection Index (SP1) for terrestrial vertebrates reached 50.9, reflecting a 3.1-point
increase over the previous year [17]. Birds show the highest global SPI (62), followed by mammals (55), while amphibians (44)
and reptiles (43) remain the least protected taxonomic groups.t’ This taxonomic bias reflects the "data shortfall" identified in earlier
research, where automated monitoring systems remain heavily focused on large, charismatic vertebrates [8].

5.2. The Impact of Protected Areas on Fragmentation

A major result of the 2025 Science-led assessment is the validation of protected area effectiveness. Tropical forests that are "strictly
protected" experienced 82% less fragmentation than comparable unprotected areas. Less strictly protected zones showed a 45%
reduction [37]. These findings underscore that the "30x30" target is biologically sound, provided that protection is strict and
geographically targeted toward high-connectivity areas [11]. Table 5 quantifies the current state of global forest connectivity, noting
that connectivity-based indices reveal far higher fragmentation rates than previous structural metrics.

Table 5: Drivers and Rates of Global Forest Fragmentation (2000—2020)

Region Primary Increase in Fragmentation
Anthropogenic
Driver
Tropical Shifting Agriculture 58-80% (Connectivity-based)
Forests (61%) [8] [8]
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Temperate Forestry (81%) [8] 51-67% (Global average range)
Forests [9]

Boreal Wildfires and High loss of carbon and
Forests Forestry [8] connectivity links [8]

Protected Strict Protection 82% less fragmentation than
Areas (Strict PAs) [8] unprotected [8]

5.3. Species-Specific Breakthroughs

a. American Pika Recruitment: Long-term LTER data analyzed via machine learning shows a severe decline in recruitment on
Niwot Ridge. The annual number of juveniles per capture fell by over 50%, with high temperatures (growing degree-days)
being the dominant driver [14].

b. Stickleback Heatwave Memory: 2024/2025 studies confirmed that "heat stress memory" can mitigate some negative effects
on growth and fecundity if the stressors are recurring, suggesting that some species may cope with increasing heatwave
frequency better than previously thought. However, singular extreme events still lead to long-term parental care dysfunction
[38].

C. Graph Neural Network Accuracy: The GNN approach to SDMs achieved AUCROC scores significantly higher than
traditional linear models, particularly in data-poor regions like the Australian Wet Tropics, by leveraging multi-modal features
including group-level (bird/plant) information [39].

d. Al for Soil and Habitat Mapping: Ensemble ML algorithms (XGBoost/Random Forest) achieved 93-94% accuracy in
delineating critical habitats like mangroves and mapping soil types for afforestation planning [10]. Table 6 presents the
benchmark performance of various machine learning architectures in ecological and geospatial classification tasks.

Table 6: Performance Metrics of Ensemble Al Models for Conservation

Al Model Specific Application Accuracy/Performance

Type

Bipartite Species Distribution Modeling 0.82-0.94 AUCROC [11]

GNN (SDM) [11]

XGBoost/RF Soil Classification & Habitat 93-94% Accuracy [20]
Mapping [20]

BART Marine Turtle Habitat >0.90 AUC [21]
Suitability [21]

Pose Animal Behavior Recognition >94% for multi-scale deep

Estimation [6] features [22]

Astrophysics- Invasive Plant Prediction [10] >90% Prediction Accuracy

ML [10]

Conclusion

The integration of individual behavior and global biogeography through a machine learning framework represents a transformative
shift in the ability to address the biodiversity crisis. Findings from 2024 and 2025 emphasize that the field has moved beyond a
phase of simple observation and entered an era of “actionable climate science,” where the speed and precision of artificial
intelligence are essential for the survival of the biosphere.

The framework proposed here, supported by the latest empirical data, leads to several high-order conclusions:

e Behavior as a Sentinel: Individual behavioral metrics—such as juvenile recruitment and transgenerational plasticity—are
more sensitive indicators of extinction risk than simple geographic presence. Al allows us to monitor these "sentinel behaviors"
at scale.

e Fragmentation as a Binding Constraint: The 80% fragmentation rate in tropical forests is the primary barrier to climate-
driven range shifts. Protecting the 30% designated by the KMGBF will only be effective if Al-derived connectivity metrics
inform the placement of these areas.
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The Power of Synergistic Policy: Integrating climate and biodiversity targets through reinforcement learning can improve
conservation efficiency by 37% and reduce government spending by 40%.

Cognitive Alignment and Ethics: The future of Al in conservation must be "people-centric.” Technological solutions must
respect the rights and knowledge of Indigenous Peoples and Local Communities (IP and LCs) to ensure that "Digital Nature"
serves both biological and social justice.

As the field advances toward 2030, the “Digital Nature” framework provides a critical bridge for translating complex eco-
evolutionary legacies into a sustainable future. By mobilizing biogeographers, behavioral ecologists, and data scientists within a
unified transdisciplinary paradigm, research efforts can shift from documenting biosphere decline toward actively engineering
ecological resilience. The window of opportunity remains open, but only through the rapid deployment of these integrated, Al-
driven solutions. Table 7 provides a roadmap for policy implementation, utilizing the framework's predictive power to maximize
the efficiency of conservation spending.

Table 7: Strategic Policy Recommendations for the 2030 Biodiversity Targets

Priority Area Action Recommended (2025- Expected Outcome

2030)
Spatial Integrate GNN-based Enhanced ecological
Planning connectivity into Target 1 continuities between PAs.
Synergy Align NDCs with NBSAP targets 40% reduction in
Finance government spending
Subsidies Redirect $1.7 trillion in harmful Mitigate drivers of habitat
Reform subsidies loss and overexploitation.
Nature Protect "Irrecoverable Carbon" Co-benefits  for  climate
Restoration (Peatlands/Mangroves) (37% mitigation) and nature
Equity & FPIC for digital monitoring in People-centric Al roadmaps
Ethics Indigenous lands for local communities.
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