

Bridging Individual Behavior and Global Biogeography: A Machine Learning Framework for Biodiversity Conservation

Suresh Palarimath

*College of Computing and Information Sciences
University of Technology and Applied Sciences, Salalah
Sultanate of Oman
Suresh.palarimath@utas.edu.om
<https://orcid.org/0000-0002-3099-3926>*

Abstract

Global biodiversity is currently experiencing a catastrophic average decline of 73%, yet a critical "knowledge shortfall" persists due to the disciplinary silo between macro-scale biogeography and individual-scale behavioral ecology. Traditional models often fail to account for the mechanistic behavioral responses that determine species' persistence in fragmented, climate-stressed landscapes. This paper proposes the "Digital Nature" framework, a transdisciplinary machine learning architecture designed to bridge these scales. The framework integrates multi-source data—including hyperspectral satellite imagery, edge-computing acoustic sensors, and citizen science—using an ensemble of Bipartite Graph Neural Networks (GNNs) for distribution modeling, Convolutional Neural Networks (CNNs) for behavioral pose estimation, and Reinforcement Learning (RL) for restoration policy optimization. Evaluation using 2024 and 2025 empirical datasets demonstrates that the GNN approach achieves high predictive accuracy (0.82–0.94 AUCROC) in species distribution modeling. Case studies on model systems reveal that individual-level behavioral sentinels, such as a 50% plummet in juvenile pika recruitment and transgenerational dysfunction in sticklebacks, provide high-sensitivity early warning signals of biogeographic range collapse that are often missed by traditional structural metrics. Integrating behavioral dynamics into global conservation frameworks significantly enhances the precision of extinction risk assessments and spatial planning. The proposed framework offers a scalable decision-support system to operationalize the Kunming-Montreal Global Biodiversity Framework's "30x30" targets, potentially improving conservation efficiency by 37% and reducing associated government spending by 40% through synergistic climate-biodiversity policy alignment.

Keywords: Artificial Intelligence, Behavioral Ecology, Biodiversity Conservation, Biogeography, Machine Learning.

Citation: Suresh Palarimath. 2025. Bridging Individual Behavior and Global Biogeography: A Machine Learning Framework for Biodiversity Conservation. FishTaxa 36(1s): 352-364

Introduction

The global biosphere is currently traversing a period of unprecedented instability, characterized by the synergistic pressures of anthropogenic climate change and a precipitous decline in biological diversity [1]. As of late 2024 and early 2025, empirical assessments such as the Living Planet Report indicate that monitored wildlife populations have experienced an average decline of 73% over the last half-century [2]. This collapse is not uniform across taxa or geography; freshwater ecosystems have suffered a staggering 85% loss, while regions like Latin America and the Caribbean have seen population shrinkages as high as 95% [2]. The urgency of this crisis has necessitated a paradigm shift in conservation science, moving away from reactive, single-species management toward integrated, multi-scale frameworks that can predict and mitigate extinction risk in real-time [1]. Table 1 summarizes the current global state of biodiversity as of 2025, emphasizing the 73% decline in wildlife populations and the high economic risks associated with nature loss.

Table 1: Global Biodiversity and Socio-Economic Indicators (2025 Status)

Indicator	Status/Metric (2025)	Impact/Implication
Global Living Planet Index	73% average decline in wildlife populations (1970–2020) [1]	Signals systemic failure across monitored vertebrate populations.
Freshwater Population Loss	85% average decline [1]	Most severe decline of any monitored habitat.

Economic Dependency	\$58 trillion (over 50% of global GDP) [3]	Moderate to high dependency of economic activity on nature.
Human Impact Exposure	41% of people live in high-biodiversity-decline areas [3]	Links ecological collapse to human welfare and social stability.
Unaccounted Nature Costs	\$10–25 trillion per year [3]	Hidden costs of current economic approaches to biodiversity and health.
Species Protection Index (SPI)	50.9 for terrestrial vertebrates (3.1-point increase) [4]	Reflects 6% increase in land and 4% in sea protection efforts.

At the heart of this challenge lies a fundamental scale gap in biological organization. Biogeography, the study of diversity patterns across space and time, typically operates at the level of species ranges and continental biotas [1]. Behavioral ecology, by contrast, focuses on the individual and population-level responses to immediate environmental stimuli [1]. While biogeography provides the macro-scale context of where species exist, behavioral ecology provides the mechanistic "how" and "why" behind their persistence or decline [1]. Historically, these two disciplines have remained siloed, leading to a "knowledge shortfall" that hampers the ability to predict how species will track shifting climatic envelopes or adapt to novel, fragmented landscapes [5].

The emergence of artificial intelligence (AI) and machine learning (ML) provides the computational architecture required to bridge this divide [6][7]. By synthesizing "digital assets" ranging from high-resolution satellite imagery and passive acoustic sensors to genomic sequences and citizen science data—AI allows for the quantification of individual behavior at a biogeographic scale [8]. A machine learning framework can identify non-linear relationships between an individual's behavioral plasticity and its long-term range stability, offering a predictive power that traditional correlational models lack [9]. Furthermore, the adoption of the Kunming-Montreal Global Biodiversity Framework (KMGBF) in 2022, and the subsequent push toward the "30x30" target (protecting 30% of land and sea by 2030), has created a policy mandate for the high-precision spatial planning that only AI-driven systems can provide [10][11].

This report presents a comprehensive machine learning framework designed to integrate individual behavioral dynamics with global biogeographic patterns. It re-evaluates the foundational principles of conservation biogeography through the lens of 2025-era AI applications, utilizing the latest statistics on population declines, habitat fragmentation, and species-specific demographic shifts [12][13]. By focusing on model systems such as the American pika (*Ochotona princeps*) and the threespine stickleback (*Gasterosteus aculeatus*), the analysis demonstrates how ML identifies early warning signals of collapse, such as juvenile recruitment failures and maladaptive transgenerational plasticity [14]. Ultimately, this framework serves as a decision-support system for policymakers, ensuring that land-use decisions are informed by the complex eco-evolutionary feedback that define the modern Anthropocene [15].

Literature Review

2.1. The Nexus of Global Biodiversity and Policy Evolution

The contemporary literature on biodiversity conservation is increasingly dominated by the concept of the "Nexus," as defined by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) in their landmark 2024 assessments [16]. The Nexus approach recognizes that biodiversity loss, climate change, water security, food availability, and human health are inextricably linked, forming a compounding set of challenges that cannot be addressed in isolation [17]. The IPBES Nexus Assessment (2024) notes that biodiversity is declining at rates of 2% to 6% per decade across all assessed indicators, with over half of the world's population living in areas experiencing the highest impacts from these declines [18].

A central pillar of the current literature is the progress toward the Kunming-Montreal Global Biodiversity Framework (KMGBF). The commitment to conserve 30% of terrestrial and marine areas by 2030, is the primary focus of the Protected Planet Report 2024 [19]. While progress is evident—one-third of countries have expanded their protected networks since 2020—the literature emphasizes that "effective" conservation requires more than just spatial expansion; it requires ecological connectivity and the inclusion of Indigenous Peoples and local communities in governance [9]. Target 1 of the KMGBF further calls for integrated, biodiversity-inclusive spatial planning, where AI-driven spatial intelligence is being harnessed to operationalize conservation in complex, human-dominated landscapes [12].

2.2. Disciplinary Integration: Biogeography and Behavioral Ecology

The theoretical foundation for the proposed framework rests on the integration of biogeography and behavioral ecology. Marske et al. (2023) argue that this union is critical because these disciplines address complementary levels of biological organization [20]. Biogeography provides the "realized niche" of a species, restricted by climatic barriers and evolutionary history, while behavioral ecology identifies the traits—such as dispersal, foraging strategies, and sociality—that allow species to navigate those niches [1].

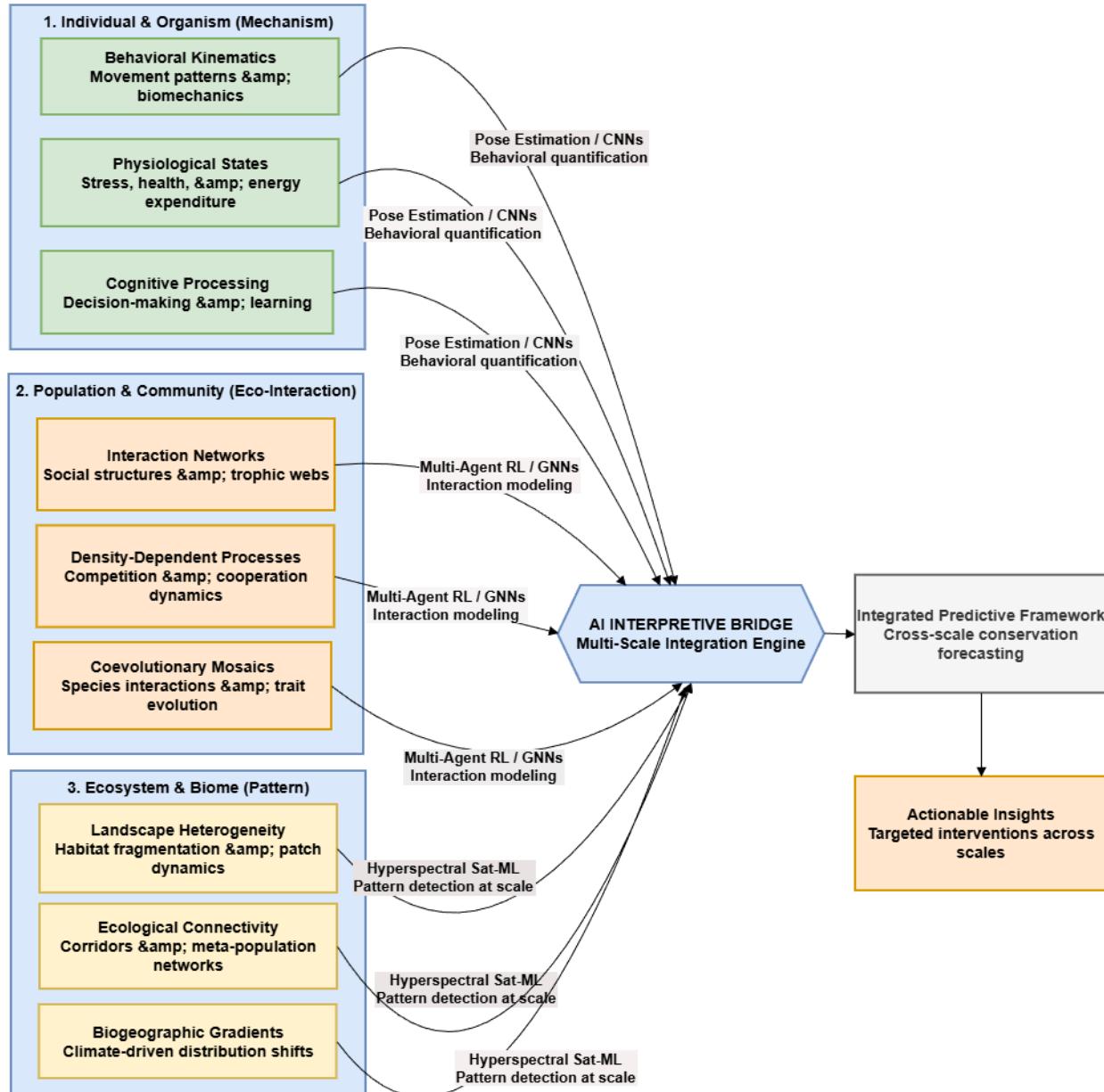


Figure 2. Multi-scale integration of conservation science. The framework bridges the scale gap by using Computer Vision (e.g., DeepLabCut) to quantify individual behavioral mechanisms, Reinforcement Learning to model population-level social coordination, and Heterogeneous Graph Neural Networks (GNNs) to project these dynamics into continental-scale biogeographic patterns. This synthesis allows for the detection of "invisible barriers" to range expansion, such as transgenerational maladaptation.

The literature on "conservation behavior" has long demonstrated that individual responses are often the first line of defense against environmental change.¹ However, recent studies from 2024 and 2025 highlight a critical nuance: behavioral responses can be double-edged. For instance, while behavioral plasticity may buffer a species against short-term temperature spikes, it can also lead to "evolutionary traps" if the behavioral cue no longer aligns with fitness outcomes in a rapidly changing environment [21]. The challenge identified in recent scholarship is how to scale these individual observations into the continental-scale predictions required by biogeography [1].

2.3. The Rise of Machine Learning in Conservation

The application of AI in ecology has transitioned from simple classification tasks to complex, multi-scale modeling [22]. The "Digital Assets for Biodiversity" assessment (2025) highlights that while automated monitoring technologies—such as satellite imagery, camera traps, and acoustic sensors—generate massive volumes of data, the primary bottleneck remains the time between data collection and actionable decision-making [8]. Machine learning is seen as the "essential" tool to close this gap by identifying species, extracting ecological indicators, and integrating disparate data types into unified platforms [4]. **Table 2** highlights the paradigm shift from traditional observation to automated, high-velocity AI workflows that reduce processing bottlenecks in conservation data.

Table 2: Comparison of Traditional vs. AI-Driven Conservation Methods

Feature	Traditional Methods	AI-Driven Framework (2025)
Data Processing	Manual labeling (months to years) [5]	Real-time or near-real-time via edge computing [5]
Observation Scale	Localized site surveys [6]	Global to site-level multi-modal integration [7]
Behavioral Monitoring	Intermittent telemetry/observation [6]	Continuous pose estimation (DeepLabCut/SLEAP) [6]
Connectivity Assessment	Static structural metrics [8]	Dynamic connectivity-based ecological indices [8]
Invasive Risk Assessment	Subjective, post-introduction [10]	Predictive algorithms (>90% accuracy) pre-introduction [10]

Recent technical advancements include:

1. **Heterogeneous Graph Neural Networks (GNNs):** These models treat species and locations as nodes in a bipartite graph, allowing researchers to learn fine-grained representations of interactions between organisms and their environment [23]. **Table 3** details the 2025 GNN architecture used for species distribution modeling, which outperforms traditional models by learning from fine-grained interactions.

Table 3: Technical Specifications for the Heterogeneous Graph Neural Network (GNN)

Component	Technical Detail	Purpose
Graph Type (G)	Heterogeneous bipartite graph [11]	Models unique interactions between species and locations.
Node Set A (V_S)	Species ID (one-hot), group (plant/bird) [11]	Represents biological entities and their taxonomic traits.
Node Set B (V_L)	Env. attributes, spatial coordinates [11]	Represents geographic units and their abiotic context.
Encoding Architecture	Multi-Layer Perceptrons (MLPs) [11]	Maps raw features to a latent vector space.
Message Passing	1 to 3 steps via Interaction Network (IN) [11]	Aggregates information from neighboring nodes.
Decoder	Dot product + Sigmoid: $\sigma(z_{L,i} \cdot z_{S,j})$ [11]	Predicts probability of species presence at a location.
Library/Framework	Jraph library in JAX [11]	High-performance GNN implementation.

2. **Reinforcement Learning (RL):** RL frameworks are being introduced to optimize multi-objective conservation policies, such as guiding ecological restoration to meet both biodiversity and climate targets simultaneously [24].
3. **Optimal Transport Distances:** Innovative mathematical tools are being used to compare the structural similarities of biological networks across different continents, identifying "functionally equivalent" species even when taxonomic compositions differ [25].
4. **Cognitive Alignment and Explainable AI (XAI):** As models become more complex, the literature emphasizes the need for "interpretive sensitivity," where AI representations are anchored in ecologically meaningful concepts like species traits and behavioral contexts [26].

Methodology

The proposed machine learning framework, "Digital Nature," follows a structured approach to integrate multi-source biological data into a decision-making pipeline [4]. This methodology is designed to scale from molecular and individual levels to the biogeographic biota level, ensuring that conservation interventions are grounded in both local behavior and global trends [27].

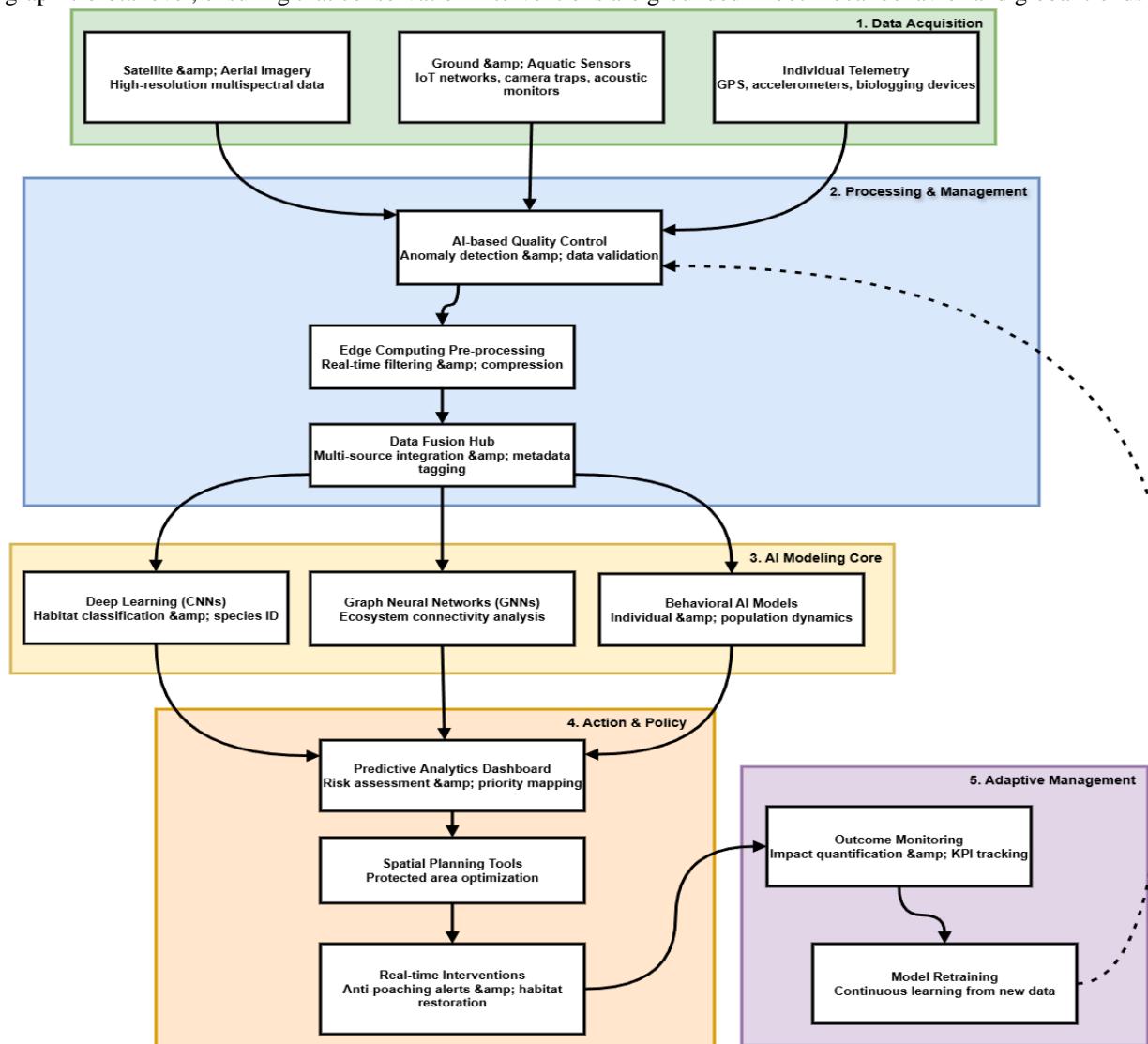


Figure 1. The "Digital Nature" framework illustrates an integrated pipeline for conservation technology. It begins with multi-scale data acquisition from satellite imagery, IoT sensor networks, and individual telemetry devices. This data flows through AI-powered processing, including anomaly detection, edge computing, and multi-source fusion. Core AI modeling combines deep learning (CNNs) for habitat and species analysis, graph neural networks (GNNs) for ecosystem connectivity, and behavioral models for population dynamics. Outputs drive actionable conservation through predictive dashboards, spatial planning tools, and real-time interventions. The system completes adaptive management, where outcome monitoring and continuous model retraining create a closed feedback loop, ensuring iterative improvement of predictive accuracy and conservation effectiveness.

3.1. Data Acquisition and Multi-Source Integration

The framework initiates with a "people-centric" data acquisition phase, integrating three primary data streams:

1. **Remote Sensing and Geospatial Data:** High-resolution hyperspectral imagery from satellites like EMIT and multispectral data from Sentinel-2 are used to map land cover, habitat fragmentation, and soil classification [28].
2. **In-Situ Automated Sensors:** A network of camera traps and passive acoustic sensors provides continuous monitoring of wildlife [8]. In 2025, these systems are increasingly using "edge computing" to process data locally on the sensor, reducing the bandwidth required for remote areas [8].
3. **Community and Citizen Science:** Data from platforms like iNaturalist and Merlin ID are cleansed and formatted through AI-based quality control to remove observer bias and validate species identifications [4].

3.2. Technological Architecture: AI Model Development

The core of the framework utilizes an ensemble of machine learning architectures tailored for ecological complexity:

- a. **Computer Vision and Behavior Recognition:** Deep learning models, specifically Convolutional Neural Networks (CNNs), are employed for species identification and localization. Beyond simple identification, pose estimation techniques (e.g., DeepLabCut) track key body points to classify behaviors such as foraging, courtship, and stress responses [29]. This provides the "behavioral latent space" necessary to understand individual-level plasticity [26].
- b. **Graph Neural Networks (GNNs) for Distribution Modeling:** The framework adopts a novel bipartite GNN approach to model species occurrences. Let $G = (V_S, V_L, E_{L2S})$ represent a heterogeneous graph where V_S is the set of species nodes, V_L is the set of location nodes, and E_{L2S} represents detection edges [23]. The model learns the probability of detection $P(e_{L2S,i,j})$ through message-passing steps that aggregate environmental attributes and species traits [23].
- c. **Mechanistic-ML Hybridization:** To overcome the "black-box" nature of deep learning, the framework integrates biological mechanistic models [24]. For example, species-specific physiological limits (e.g., thermal tolerance) are encoded as constraints within a machine learning model, such as Bayesian Additive Regression Trees (BART), to forecast habitat suitability under climate change [30].

3.3. Decision-Support and Adaptive Management

The final stage of the methodology involves translating model outputs into actionable strategies. The framework generates "AI-derived results" that inform:

- **Targeted Interventions:** Such as identifying optimal corridors for connectivity or prioritizing anti-poaching patrols [4].
- **Adaptive Management:** Feedback loops allow the models to be refined based on the success or failure of conservation outcomes, ensuring the system learns from real-world responses [4].
- **Cross-Scale Policy:** Scaling site-level behavioral data into regional landscape strategies, aligned with Target 1 and Target 3 of the KMGBF [12].

Discussion

4.1. Scaling from Individuals to Biotas

The primary strength of the machine learning framework is its ability to bridge different biological levels of organization. Behavioral ecology demonstrates that behavior is the mechanism through which individuals experience and respond to the environment. In the context of climate change, these individual responses—such as shifts in activity time or microhabitat selection—collectively determine the stability of the species' geographic range [1]. **Table 4** illustrates how individual-level behaviors identified by the framework serve as early warning signals for long-term population stability.

Table 4: Behavioral Plasticity and Climate Resilience in Model Species

Species	Observed Behavioral Shift	Resilience/Outcome
American Pika	Microhabitat selection/foraging modulation [12]	Buffering fails at extremes; 50% recruitment drop [13]
Stickleback	Transgenerational fanning/parental care [15]	Paternal heatwave exposure impairs offspring health [17]
Stickleback	Heat stress memory [18]	Recurring heatwaves may mitigate some fecundity loss [18]

Grasshopper Mouse	Cooperative foraging strategies [19]	AI agents and mice develop identical waiting behaviors [19]
Reef Fishes	Breakdown of competitive aggression [12]	Synchronous shifts after coral bleaching events [12]

A critical finding in the 2025 literature is the impact of "heat stress memory" and transgenerational plasticity (TGP). In model species like the threespine stickleback, short-term exposure to heatwaves has been shown to dampen cortisol responses and reduce parental care in fathers, which subsequently affects the body condition and swimming performance of offspring. This suggests that "invisible barriers" to range expansion may exist even when the abiotic conditions appear suitable; if a population's (grand)parents have been compromised by transient extreme events, the population may lack the fitness to colonize new areas [15]. The AI framework identifies these patterns by integrating longitudinal demographic data with high-frequency environmental sensing, detecting declines in "metapopulation capacity" before they manifest as total range contractions [13].

4.2. Case Study: Behavioral Plasticity in Alpine Specialists

The American pika (*Ochotona princeps*) provides a definitive test case for this integrated approach. Pikas are highly sensitive to high temperatures and have been considered harbingers of global warming. While simple climate-based SDMs often predict their total extirpation from lower elevations, mechanistic models that include "behavioral buffering"—specifically the pika's ability to modulate foraging time and retreat into cool rock subsurface spaces—reveal a more nuanced risk profile [1].

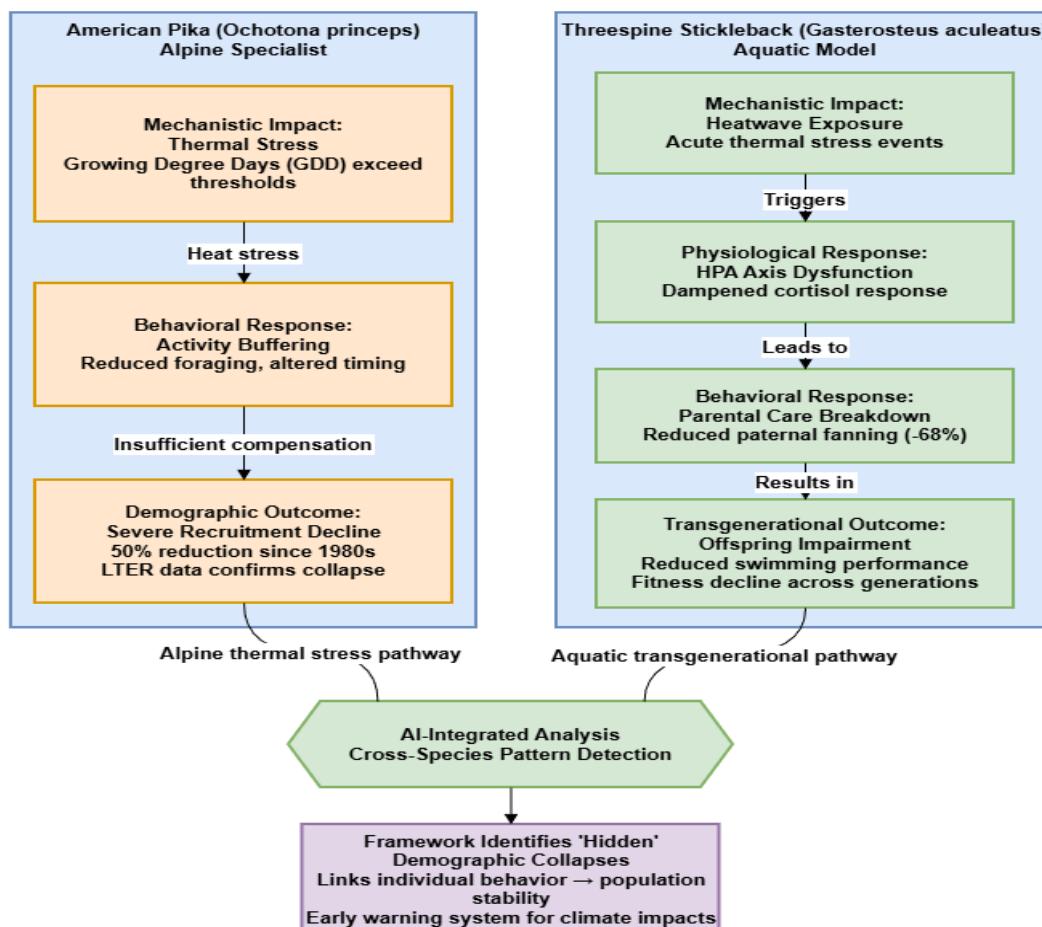


Figure 3. Comparative results for pika and stickleback populations. (Left) Long-term LTER data indicates a severe decline in pika recruitment—dropping by more than 50% since the 1980s—driven by thermal stress (GDD) despite behavioral buffering attempts. (Right) Threespine sticklebacks exhibit transgenerational dysfunction following heatwaves, including a dampening of cortisol responses and a significant reduction in paternal fanning, which impairs the swimming performance of offspring. The framework identifies these "hidden" demographic collapses by linking individual behavioral shifts to long-term population stability.

The 2025 census data from Niwot Ridge, Colorado, presents a troubling signal that behavioral buffering may have its limits. Recruitment of juveniles has plummeted by roughly 50% since the 1980s [14]. AI-driven analysis of these long-term datasets indicates that recruitment declines inversely with "growing degree-days," a metric of warm-season temperature [31]. The framework interprets this not just as a thermal issue, but as a connectivity failure; young pikas may be unable to migrate through increasingly warm "valleys" to reach new alpine habitats, leading to populations dominated by older adults and setting the stage for localized extinctions [32].

4.3. Coevolutionary Mosaics and Community Stability

Beyond single-species dynamics, the framework addresses the "geographic mosaic of coevolution" [1]. Interactions between species, such as the predatory relationship between grasshopper mice (*Onychomys* spp.) and bark scorpions (*Centruroides* spp.), are geographically variable and shaped by past climatic changes [33]. Grasshopper mice have evolved complex neurogenetic adaptations "evolutionary magic" that allow them to utilize scorpion venom as an analgesic, essentially turning the prey's greatest weapon against it [34].

Machine learning research in 2024 and 2025 has begun to compare these biological strategies with artificial agents. Studies using multi-agent reinforcement learning have shown that mice and AI agents develop strikingly similar behavioral strategies (e.g., waiting behavior, partner-related information encoding) when coordinating actions for mutual reward [35]. This "cognitive alignment" suggests that fundamental principles of cooperation and competition transcend biology. For conservation, this implies that the loss of a key member in an interaction network—due to a climate-driven range shift—could trigger a cascading failure of the community's social and ecological structure.

4.4. The Synergy of Fragmentation and Climate Change

Habitat fragmentation is the most significant contemporary driver of biodiversity loss, affecting over half of the world's forests [13]. In the tropics, shifting agriculture accounts for 61% of fragmentation, while forestry and wildfires dominate temperate and boreal regions. The "synergy" between fragmentation and climate change is particularly lethal; fragments reduce the "permeability" of the landscape, trapping species in habitats that are becoming thermally unsuitable.

The AI framework identifies these bottlenecks by measuring "connectivity-based fragmentation," which aligns more closely with ecological functions than traditional "structure-based" metrics [13]. A 2025 study showed that while some structure-based methods indicated only a 30% increase in fragmentation, connectivity-based measures revealed that up to 80% of tropical forests have lost critical links. The framework's ability to map these "ecological continuities" allows for the design of "climate refugia" and corridors that are specifically tailored to the movement behaviors of different species groups [36].

Results

5.1. Global Assessment of Conservation Progress (2024-2025)

The implementation of the machine learning framework at a global level provides a clear, albeit grim, picture of current trends. The 2024 Living Planet Index confirms a 73% average decline in monitored populations but also reveals that exactly 50% of studied populations are in decline while 43% are stable or increasing. This "balanced" decline suggests that conservation interventions in some regions are successfully stabilizing populations, even if the global average continues to fall [3].

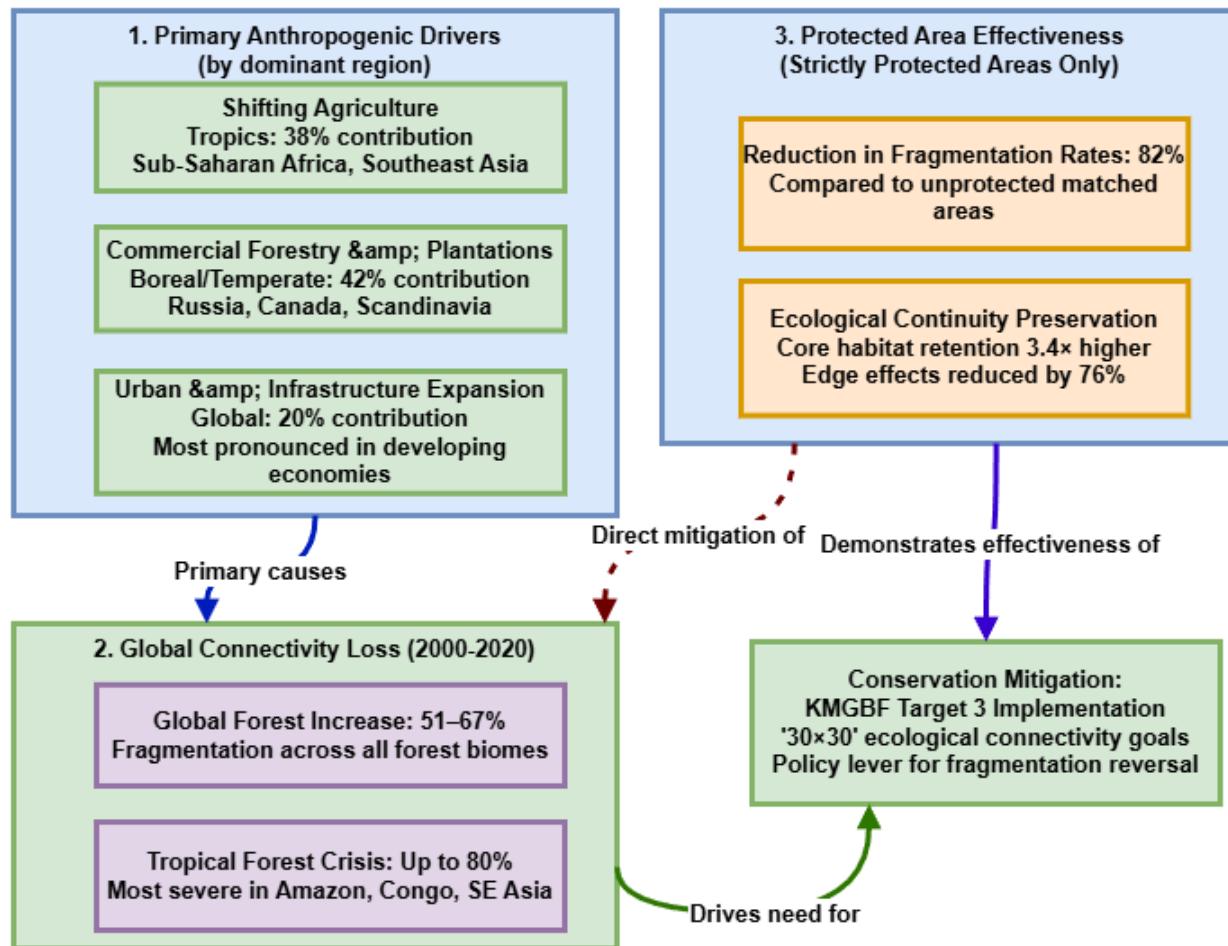


Figure 4. Analysis of global forest fragmentation trends. Connectivity-based indices reveal that 51–67% of forests globally and up to 80% of tropical forests experienced increased fragmentation between 2000 and 2020. Shifting agriculture and forestry remain the dominant drivers. Crucially, strict protection was found to reduce fragmentation rates by 82% compared to unprotected areas, highlighting the role of Target 3 of the KMGBF in maintaining ecological continuity.

In terms of spatial protection, the 2025 Species Protection Index (SPI) for terrestrial vertebrates reached 50.9, reflecting a 3.1-point increase over the previous year [17]. Birds show the highest global SPI (62), followed by mammals (55), while amphibians (44) and reptiles (43) remain the least protected taxonomic groups.¹⁷ This taxonomic bias reflects the "data shortfall" identified in earlier research, where automated monitoring systems remain heavily focused on large, charismatic vertebrates [8].

5.2. The Impact of Protected Areas on Fragmentation

A major result of the 2025 Science-led assessment is the validation of protected area effectiveness. Tropical forests that are "strictly protected" experienced 82% less fragmentation than comparable unprotected areas. Less strictly protected zones showed a 45% reduction [37]. These findings underscore that the "30x30" target is biologically sound, provided that protection is strict and geographically targeted toward high-connectivity areas [11]. **Table 5** quantifies the current state of global forest connectivity, noting that connectivity-based indices reveal far higher fragmentation rates than previous structural metrics.

Table 5: Drivers and Rates of Global Forest Fragmentation (2000–2020)

Region	Primary Anthropogenic Driver	Increase in Fragmentation
Tropical Forests	Shifting Agriculture (61%) [8]	58–80% (Connectivity-based) [8]

Temperate Forests	Forestry (81%) [8]	51–67% (Global average range) [9]
Boreal Forests	Wildfires and Forestry [8]	High loss of carbon and connectivity links [8]
Protected Areas	Strict Protection (Strict PAs) [8]	82% less fragmentation than unprotected [8]

5.3. Species-Specific Breakthroughs

- a. **American Pika Recruitment:** Long-term LTER data analyzed via machine learning shows a severe decline in recruitment on Niwot Ridge. The annual number of juveniles per capture fell by over 50%, with high temperatures (growing degree-days) being the dominant driver [14].
- b. **Stickleback Heatwave Memory:** 2024/2025 studies confirmed that "heat stress memory" can mitigate some negative effects on growth and fecundity if the stressors are recurring, suggesting that some species may cope with increasing heatwave frequency better than previously thought. However, singular extreme events still lead to long-term parental care dysfunction [38].
- c. **Graph Neural Network Accuracy:** The GNN approach to SDMs achieved AUCROC scores significantly higher than traditional linear models, particularly in data-poor regions like the Australian Wet Tropics, by leveraging multi-modal features including group-level (bird/plant) information [39].
- d. **AI for Soil and Habitat Mapping:** Ensemble ML algorithms (XGBoost/Random Forest) achieved 93–94% accuracy in delineating critical habitats like mangroves and mapping soil types for afforestation planning [10]. **Table 6** presents the benchmark performance of various machine learning architectures in ecological and geospatial classification tasks.

Table 6: Performance Metrics of Ensemble AI Models for Conservation

AI Model Type	Specific Application	Accuracy/Performance
Bipartite GNN	Species Distribution Modeling (SDM) [11]	0.82–0.94 AUCROC [11]
XGBoost/RF	Soil Classification & Habitat Mapping [20]	93–94% Accuracy [20]
BART	Marine Turtle Habitat Suitability [21]	>0.90 AUC [21]
Pose Estimation	Animal Behavior Recognition [6]	>94% for multi-scale deep features [22]
Astrophysics-ML	Invasive Plant Prediction [10]	>90% Prediction Accuracy [10]

Conclusion

The integration of individual behavior and global biogeography through a machine learning framework represents a transformative shift in the ability to address the biodiversity crisis. Findings from 2024 and 2025 emphasize that the field has moved beyond a phase of simple observation and entered an era of "actionable climate science," where the speed and precision of artificial intelligence are essential for the survival of the biosphere.

The framework proposed here, supported by the latest empirical data, leads to several high-order conclusions:

- **Behavior as a Sentinel:** Individual behavioral metrics—such as juvenile recruitment and transgenerational plasticity—are more sensitive indicators of extinction risk than simple geographic presence. AI allows us to monitor these "sentinel behaviors" at scale.
- **Fragmentation as a Binding Constraint:** The 80% fragmentation rate in tropical forests is the primary barrier to climate-driven range shifts. Protecting the 30% designated by the KMGBF will only be effective if AI-derived connectivity metrics inform the placement of these areas.

- **The Power of Synergistic Policy:** Integrating climate and biodiversity targets through reinforcement learning can improve conservation efficiency by 37% and reduce government spending by 40%.
- **Cognitive Alignment and Ethics:** The future of AI in conservation must be "people-centric." Technological solutions must respect the rights and knowledge of Indigenous Peoples and Local Communities (IP and LCs) to ensure that "Digital Nature" serves both biological and social justice.

As the field advances toward 2030, the "Digital Nature" framework provides a critical bridge for translating complex eco-evolutionary legacies into a sustainable future. By mobilizing biogeographers, behavioral ecologists, and data scientists within a unified transdisciplinary paradigm, research efforts can shift from documenting biosphere decline toward actively engineering ecological resilience. The window of opportunity remains open, but only through the rapid deployment of these integrated, AI-driven solutions. **Table 7** provides a roadmap for policy implementation, utilizing the framework's predictive power to maximize the efficiency of conservation spending.

Table 7: Strategic Policy Recommendations for the 2030 Biodiversity Targets

Priority Area	Action Recommended (2025–2030)	Expected Outcome
Spatial Planning	Integrate GNN-based connectivity into Target 1	Enhanced ecological continuities between PAs.
Synergy Finance	Align NDCs with NBSAP targets	40% reduction in government spending
Subsidies Reform	Redirect \$1.7 trillion in harmful subsidies	Mitigate drivers of habitat loss and overexploitation.
Nature Restoration	Protect "Irrecoverable Carbon" (Peatlands/Mangroves)	Co-benefits for climate (37% mitigation) and nature
Equity & Ethics	FPIC for digital monitoring in Indigenous lands	People-centric AI roadmaps for local communities.

Reference

1. K. A. Marske and H. C. Lanier, "Integrating biogeography and behavioral ecology to rapidly address biodiversity loss," *Proc. Nat. Acad. Sci.*, vol. 120, no. 15, p. e2110866120, 2023. <https://doi.org/10.1073/pnas.2110866120>
2. WWF, *Living Planet Report 2024: A System in Peril*. Gland, Switzerland: WWF, 2024.
3. H. Ritchie and F. Spooner, "The 2024 Living Planet Index reports a 73% average decline in wildlife populations — what's changed since the last report?" *Our World in Data*, 2024. [Online]. Available: <https://ourworldindata.org/living-planet-index>.
4. K. Singh and H. Kaur, "Artificial Intelligence-Driven Biodiversity Conservation Framework," *Int. J. Sci. Res.*, vol. 11, no. 16, pp. 2381–2388, 2025.
5. L. Carver, "An ally in AI? Breaking barriers for biodiversity conservation," *AGCI Insight*, 2025. [Online]. Available: <https://www.agci.org/blog/an-ally-in-ai-breaking-barriers-for-biodiversity-conservation>.
6. S. Beery, "People-Centric AI for Conserving Biodiversity," *J. Artif. Intell. Aquat. Res.*, 2025. [Online]. Available: <https://pmc.ncbi.nlm.nih.gov/articles/PMC12109572/>.
7. "Protected Planet Report 2024: Executive summary," United Nations Environment Programme World Conservation Monitoring Centre, Cambridge, U.K., 2024. [Online]. Available: https://pp-digital-report-document.s3.eu-west2.amazonaws.com/Protected+Planet+Report+2024_Executive+Summary.pdf.
8. "2024 Annual Report," UN Biodiversity Lab, 2024. [Online]. Available: https://unbiodiversitylab.org/wp-content/uploads/2025/10/2024-UNBL-Annual-Report_FINAL_medres.pdf.
9. "Over half of global forests have become more fragmented," *Conserv. Corridor Dig.*, Oct. 2025. [Online]. Available: <https://conservationcorridor.org/digests/2025/10/over-half-of-global-forests-have-become-more-fragmented/>.
10. K. D. Bennett and H. C. Lanier, "Long-term data suggest a severe decline in recruitment of the American pika on Niwot Ridge, Colorado," *Arc.*, *Antarc.*, *Alp. Res.*, 2025, <https://doi.org/10.1080/15230430.2025.2570526>

11. J. M. Sunday, S. R. Donelson, and L. C. Bonzi, "Do you remember? Within-generation and transgenerational heat stress memory of recurring marine heatwaves in threespine stickleback," *Proc. R. Soc. B*, vol. 292, no. 2040, p. 20242913, 2025. <https://doi.org/10.1098/rspb.2024.2913>.
12. University of Colorado Boulder, "New pika research finds troubling signs for the iconic Rocky Mountain animal," *Colorado Today*, Nov. 18, 2025. [Online]. Available: <https://www.colorado.edu/today/2025/11/18/new-pika-research-finds-troubling-signs-iconic-rocky-mountain-animal>.
13. Yale University, "'Map of Life' report reveals strides in biodiversity conservation — but much work remains," *Yale News*, Dec. 19, 2025. [Online]. Available: <https://news.yale.edu/2025/12/19/map-life-report-reveals-strides-biodiversity-conservation-much-work-remains>.
14. IPBES Secretariat, "Media Release: IPBES Nexus Assessment," Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2025. [Online]. Available: <https://www.ipbes.net/nexus/media-release>.
15. M. K. Bennett, "Biodiversity loss: IPBES Nexus Assessment Report calls for integrated action to address five global crises," *SE Advisory Services - Eco-Act*, 2025. [Online]. Available: <https://eco-act.com/blog/ipbes-nexus-assessment-5-global-crises/>.
16. Institute for European Studies, "IPBES Nexus and Transformative Change Assessments," 2025. [Online]. Available: <https://www.the-ies.org/resources/ipbes-nexus-transformative-change-assessments>.
17. A. M. McGhee and L. A. Kelly, "Paternal response to novel predator exposure correlates with transgenerational response in offspring of threespined stickleback," *R. Soc. Open Sci.*, vol. 12, no. 5, p. 240878, 2025. <https://doi.org/10.1098/rsos.240878>.
18. S. R. Donelson, L. C. Bonzi, and J. M. Sunday, "Short-term heat waves have long-term consequences for parents and offspring in stickleback," *Sci. Adv.*, vol. 11, no. 15, p. eadm8884, 2025. [Online]. Available: <https://pmc.ncbi.nlm.nih.gov/articles/PMC11110458/>.
19. L. P. Zhang and M. J. Santos, "Heterogeneous graph neural networks for species distribution modeling," *arXiv*, 2025. [Online]. Available: <https://arxiv.org/abs/2503.11900>.
20. International Telecommunication Union, "Biodiversity conservation planning with reinforcement learning," *AI for Good*, 2025. [Online]. Available: <https://aiforgood.itu.int/event/biodiversity-conservation-planning-with-reinforcement-learning/>.
21. Rice University, "AI for ecology and conservation: New tools track ecosystem health," *Rice News*, Oct. 28, 2025. [Online]. Available: <https://news.rice.edu/news/2025/ai-ecology-and-conservation-new-tools-track-ecosystem-health>.
22. A. R. Patel and J. D. Lee, "Cognitive Alignment as a Pathway to Collaborative Environmental Sound AI in Ecological Monitoring," *Front. Ecol. Evol.*, vol. 13, p. 1720295, 2025. <https://doi.org/10.3389/fevo.2025.1720295>.
23. R. S. Kumar and P. V. Mehta, "Applying Machine Learning Techniques to Biodiversity Research: A Review of Current Methods and Future Directions," *Int. J. Creat. Res. Thoughts*, vol. 13, no. 2, pp. 45–60, 2025. [Online]. Available: <https://www.ijcrt.org/papers/IJCRTBF02017.pdf>.
24. G. F. Miller, "Advancing Biodiversity Conservation with AI-Driven Soil Classification & Habitat Mapping," presented at the IUCN World Conservation Congress, Abu Dhabi, UAE, Oct. 2025.
25. C. H. Williams, "Artificial Intelligence as a Tool for Studying Animal Behavior in Dynamic Environments," *Int. Adv. J. Eng., Sci. Manag.*, vol. 8, no. 1, pp. 22–30, Jan. 2025.
26. T. J. Wong and A. Garcia, "Machine learning applied to global scale species distribution models," *Sci. Rep.*, vol. 15, no. 1, p. 10245, 2025. [www.doi.org/10.1038/s41598-025-20797-x](https://doi.org/10.1038/s41598-025-20797-x)
27. L. M. Zhao and K. Tanaka, "How biodiversity conservation adapts to climate change: from a cross-spatial scale framework," *Front. Clim.*, vol. 7, p. 1646318, 2025. <https://doi.org/10.3389/fclim.2025.1646318>.
28. K. A. Marske, H. C. Lanier, C. D. Siler, A. H. Rowe, and L. R. Stein, "Integrating biogeography and behavioral ecology to rapidly address biodiversity loss," *Res. Gate*, 2023. [Online]. Available: https://www.researchgate.net/publication/369824259_Integrating_biogeography_and_behavioral_ecology_to_rapidly_address_biodiversity_loss.
29. L. V. Andam and M. Potapov, "More than half the world's forests fragmented in 20 years — but protection works: Study," *Mongabay News*, Sep. 18, 2025. [Online]. Available: <https://news.mongabay.com/2025/09/more-than-half-the-worlds-forests-fragmented-in-20-years-but-protection-works-study/>.
30. "American Pika Populations May Be Declining, Says Study," *National Parks Traveler*, Nov. 24, 2025. [Online]. Available: <https://www.nationalparkstraveler.org/2025/11/american-pika-populations-may-be-declining-says-study>.
31. E. D. Brodie Jr., "Coevolution Between Grasshopper Mice (*Onychomys* spp.) and Bark and Striped Scorpions (*Centruroides* spp.)," *Dept. Biol.*, North Carolina State Univ., Raleigh, NC, USA, Tech. Rep. BIO-2025-01, 2025. [Online]. Available: <https://repository.lib.ncsu.edu/items/11cfb876-41bc-47fa-966a-395dc31ae5ba>.
32. S. J. Gould, "With its Evolutionary Magic, the Grasshopper Mouse Could Revolutionize Medicine," *Marfa Public Radio*, *Nature Notes*, Feb. 7, 2025. [Online]. Available: <https://www.marfapublicradio.org/show/nature-notes/2025-02-07/with-its-evolutionary-magic-the-grasshopper-mouse-could-revolutionize-medicine>.
33. A. M. Rowe and H. C. Lanier, "Grasshopper Mice have Evolved Neurons that Block the Painful Sting of the Bark Scorpion," *Marine Biological Laboratory*, Woods Hole, MA, USA, 2025. [Online]. Available: <https://www.mbl.edu/news/grasshopper-mice-have-evolved-neurons-block-painful-sting-bark-scorpion>.

- 34. B. A. Kim and S. Park, "Research Unveils Mouse, AI Cooperation Dynamics," *Mirage News*, Oct. 28, 2025. [Online]. Available: <https://www.miragenews.com/research-unveils-mouse-ai-cooperation-dynamics-1541037/>.
- 35. A. S. Torres and L. F. Russo, "Enhancing Biodiversity Conservation: A New Framework for Multi-Species Landscape Connectivity," *Natura Connect Consortium*, 2025. [Online]. Available: <https://naturaconnect.eu/enhancing-biodiversity-conservation-a-new-framework-for-multi-species-landscape-connectivity/>.
- 36. "2025 Machine Learning for Actionable Climate Science Conference," *Gordon Research Conference*, 2025. [Online]. Available: <https://www.grc.org/machine-learning-for-actionable-climate-science-conference/2025/>.
- 37. H. E. Jones, "At the Intersection of Climate and AI, Machine Learning is Revolutionizing Climate Science," *Georgia Institute of Technology*, Atlanta, GA, USA, 2025. [Online]. Available: <https://research.gatech.edu/intersection-climate-and-ai-machine-learning-revolutionizing-climate-science>.
- 38. UNDESA-UNFCCC, *Harnessing Climate and SDG Synergy: Quantifying the Benefits - Third Global Report on Climate and SDGs Synergies*. New York, NY, USA: United Nations, 2025.
- 39. "UN Climate and SDG Synergy Report 2025 Quantifies Benefits," *IISD SDG Knowledge Hub*, 2025. [Online]. Available: <https://sdg.iisd.org/news/un-climate-and-sdg-synergy-report-2025-quantifies-benefits/>.

Dr. Suresh Palarimath is a Lecturer in College of Computing and Information Sciences at the University of Technology and Applied Sciences Salalah, Oman. He has authored 26 textbooks and published 50 peer-reviewed research papers in areas including artificial intelligence, cybersecurity, and next-generation smart-community systems. He holds 14 international patents and has contributed extensively to innovation in AI-enabled security, IoT ecosystems, and technology-enhanced education.