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Abstract 
Global biodiversity is currently experiencing a catastrophic average decline of 73%, yet a critical "knowledge shortfall" persists due 

to the disciplinary silo between macro-scale biogeography and individual-scale behavioral ecology. Traditional models often fail to 

account for the mechanistic behavioral responses that determine species' persistence in fragmented, climate-stressed landscapes. 

This paper proposes the "Digital Nature" framework, a transdisciplinary machine learning architecture designed to bridge these 

scales. The framework integrates multi-source data—including hyperspectral satellite imagery, edge-computing acoustic sensors, 

and citizen science—using an ensemble of Bipartite Graph Neural Networks (GNNs) for distribution modeling, Convolutional 

Neural Networks (CNNs) for behavioral pose estimation, and Reinforcement Learning (RL) for restoration policy optimization.  

Evaluation using 2024 and 2025 empirical datasets demonstrates that the GNN approach achieves high predictive accuracy (0.82–

0.94 AUCROC) in species distribution modeling. Case studies on model systems reveal that individual-level behavioral sentinels, 

such as a 50% plummet in juvenile pika recruitment and transgenerational dysfunction in sticklebacks, provide high-sensitivity early 

warning signals of biogeographic range collapse that are often missed by traditional structural metrics. Integrating behavioral 

dynamics into global conservation frameworks significantly enhances the precision of extinction risk assessments and spatial 

planning. The proposed framework offers a scalable decision-support system to operationalize the Kunming-Montreal Global 

Biodiversity Framework’s "30x30" targets, potentially improving conservation efficiency by 37% and reducing associated 

government spending by 40% through synergistic climate-biodiversity policy alignment. 
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Introduction 
The global biosphere is currently traversing a period of unprecedented instability, characterized by the synergistic pressures of 

anthropogenic climate change and a precipitous decline in biological diversity [1]. As of late 2024 and early 2025, empirical 

assessments such as the Living Planet Report indicate that monitored wildlife populations have experienced an average decline of 

73% over the last half-century [2]. This collapse is not uniform across taxa or geography; freshwater ecosystems have suffered a 

staggering 85% loss, while regions like Latin America and the Caribbean have seen population shrinkages as high as 95% [2]. The 

urgency of this crisis has necessitated a paradigm shift in conservation science, moving away from reactive, single-species 

management toward integrated, multi-scale frameworks that can predict and mitigate extinction risk in real-time [1]. Table 1 

summarizes the current global state of biodiversity as of 2025, emphasizing the 73% decline in wildlife populations and the high 

economic risks associated with nature loss. 

 

Table 1: Global Biodiversity and Socio-Economic Indicators (2025 Status) 

Indicator Status/Metric (2025) Impact/Implication 

Global Living 

Planet Index 

73% average decline in 

wildlife populations 

(1970–2020) [1] 

Signals systemic failure across 

monitored vertebrate populations. 

Freshwater 

Population Loss 

85% average decline [1] Most severe decline of any 

monitored habitat. 
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Economic 

Dependency 

$58 trillion (over 50% of 

global GDP) [3] 

Moderate to high dependency of 

economic activity on nature. 

Human Impact 

Exposure 

41% of people live in 

high-biodiversity-decline 

areas [3] 

Links ecological collapse to 

human welfare and social 

stability. 

Unaccounted 

Nature Costs 

$10–25 trillion per year 

[3] 

Hidden costs of current economic 

approaches to biodiversity and 

health. 

Species 

Protection Index 

(SPI) 

50.9 for terrestrial 

vertebrates (3.1-point 

increase) [4] 

Reflects 6% increase in land and 

4% in sea protection efforts. 

 

At the heart of this challenge lies a fundamental scale gap in biological organization. Biogeography, the study of diversity patterns 

across space and time, typically operates at the level of species ranges and continental biotas [1] Behavioral ecology, by contrast, 

focuses on the individual and population-level responses to immediate environmental stimuli [1]. While biogeography provides the 

macro-scale context of where species exist, behavioral ecology provides the mechanistic "how" and "why" behind their persistence 

or decline [1]. Historically, these two disciplines have remained siloed, leading to a "knowledge shortfall" that hampers the ability 

to predict how species will track shifting climatic envelopes or adapt to novel, fragmented landscapes [5] 

 

The emergence of artificial intelligence (AI) and machine learning (ML) provides the computational architecture required to bridge 

this divide [6][7]. By synthesizing "digital assets" ranging from high-resolution satellite imagery and passive acoustic sensors to 

genomic sequences and citizen science data—AI allows for the quantification of individual behavior at a biogeographic scale [8] A 

machine learning framework can identify non-linear relationships between an individual's behavioral plasticity and its long-term 

range stability, offering a predictive power that traditional correlational models lack [9] Furthermore, the adoption of the Kunming-

Montreal Global Biodiversity Framework (KMGBF) in 2022, and the subsequent push toward the "30x30" target (protecting 30% 

of land and sea by 2030), has created a policy mandate for the high-precision spatial planning that only AI-driven systems can 

provide [10][11]. 
 

This report presents a comprehensive machine learning framework designed to integrate individual behavioral dynamics with global 

biogeographic patterns. It re-evaluates the foundational principles of conservation biogeography through the lens of 2025-era AI 

applications, utilizing the latest statistics on population declines, habitat fragmentation, and species-specific demographic shifts 

[12][13]. By focusing on model systems such as the American pika (Ochotona princeps) and the threespine stickleback 

(Gasterosteus aculeatus), the analysis demonstrates how ML identifies early warning signals of collapse, such as juvenile 

recruitment failures and maladaptive transgenerational plasticity [14]. Ultimately, this framework serves as a decision-support 

system for policymakers, ensuring that land-use decisions are informed by the complex eco-evolutionary feedback that define the 

modern Anthropocene [15]. 

 

Literature Review 
2.1. The Nexus of Global Biodiversity and Policy Evolution 

The contemporary literature on biodiversity conservation is increasingly dominated by the concept of the "Nexus," as defined by 

the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) in their landmark 2024 

assessments [16]. The Nexus approach recognizes that biodiversity loss, climate change, water security, food availability, and 

human health are inextricably linked, forming a compounding set of challenges that cannot be addressed in isolation [17]. The 

IPBES Nexus Assessment (2024) notes that biodiversity is declining at rates of 2% to 6% per decade across all assessed indicators, 

with over half of the world's population living in areas experiencing the highest impacts from these declines [18]. 
 

A central pillar of the current literature is the progress toward the Kunming-Montreal Global Biodiversity Framework (KMGBF). 

The commitment to conserve 30% of terrestrial and marine areas by 2030, is the primary focus of the Protected Planet Report 2024 

[19]. While progress is evident—one-third of countries have expanded their protected networks since 2020—the literature 

emphasizes that "effective" conservation requires more than just spatial expansion; it requires ecological connectivity and the 

inclusion of Indigenous Peoples and local communities in governance [9]. Target 1 of the KMGBF further calls for integrated, 

biodiversity-inclusive spatial planning, where AI-driven spatial intelligence is being harnessed to operationalize conservation in 

complex, human-dominated landscapes [12]. 
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2.2. Disciplinary Integration: Biogeography and Behavioral Ecology 

The theoretical foundation for the proposed framework rests on the integration of biogeography and behavioral ecology. Marske et 

al. (2023) argue that this union is critical because these disciplines address complementary levels of biological organization [20]. 

Biogeography provides the "realized niche" of a species, restricted by climatic barriers and evolutionary history, while behavioral 

ecology identifies the traits—such as dispersal, foraging strategies, and sociality—that allow species to navigate those niches [1]. 

 

Figure 2. Multi-scale integration of conservation science. The framework bridges the scale gap by using Computer Vision 

(e.g., DeepLabCut) to quantify individual behavioral mechanisms, Reinforcement Learning to model population-level 

social coordination, and Heterogeneous Graph Neural Networks (GNNs) to project these dynamics into continental-scale 

biogeographic patterns. This synthesis allows for the detection of "invisible barriers" to range expansion, such as 

transgenerational maladaptation. 

 

The literature on "conservation behavior" has long demonstrated that individual responses are often the first line of defense against 

environmental change.1 However, recent studies from 2024 and 2025 highlight a critical nuance: behavioral responses can be 

double-edged. For instance, while behavioral plasticity may buffer a species against short-term temperature spikes, it can also lead 

to "evolutionary traps" if the behavioral cue no longer aligns with fitness outcomes in a rapidly changing environment [21]. The 

challenge identified in recent scholarship is how to scale these individual observations into the continental-scale predictions required 

by biogeography [1]. 
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2.3. The Rise of Machine Learning in Conservation 

The application of AI in ecology has transitioned from simple classification tasks to complex, multi-scale modeling [22]. The 

"Digital Assets for Biodiversity" assessment (2025) highlights that while automated monitoring technologies—such as satellite 

imagery, camera traps, and acoustic sensors—generate massive volumes of data, the primary bottleneck remains the time between 

data collection and actionable decision-making [8]. Machine learning is seen as the "essential" tool to close this gap by identifying 

species, extracting ecological indicators, and integrating disparate data types into unified platforms [4]. Table 2 highlights the 

paradigm shift from traditional observation to automated, high-velocity AI workflows that reduce processing bottlenecks in 

conservation data. 

 

Table 2: Comparison of Traditional vs. AI-Driven Conservation Methods 

Feature Traditional Methods AI-Driven Framework (2025) 

Data Processing Manual labeling (months 

to years) [5] 

Real-time or near-real-time via 

edge computing [5] 

Observation 

Scale 

Localized site surveys [6] Global to site-level multi-modal 

integration [7] 

Behavioral 

Monitoring 

Intermittent 

telemetry/observation [6] 

Continuous pose estimation 

(DeepLabCut/SLEAP) [6] 

Connectivity 

Assessment 

Static structural metrics 

[8] 

Dynamic connectivity-based 

ecological indices [8] 

Invasive Risk 

Assessment 

Subjective, post-

introduction [10] 

Predictive algorithms (>90% 

accuracy) pre-introduction [10] 

 

Recent technical advancements include: 

1. Heterogeneous Graph Neural Networks (GNNs): These models treat species and locations as nodes in a bipartite graph, 

allowing researchers to learn fine-grained representations of interactions between organisms and their environment [23]. 

Table 3 details the 2025 GNN architecture used for species distribution modeling, which outperforms traditional models by 

learning from fine-grained interactions. 

 

Table 3: Technical Specifications for the Heterogeneous Graph Neural Network (GNN) 

Component Technical Detail Purpose 

Graph Type (𝑮) Heterogeneous bipartite 

graph [11] 

Models unique interactions 

between species and locations. 

Node Set A (𝑽𝑺) Species ID (one-hot), 

group (plant/bird) [11] 

Represents biological entities 

and their taxonomic traits. 

Node Set B (𝑽𝑳) Env. attributes, spatial 

coordinates [11] 

Represents geographic units and 

their abiotic context. 

Encoding 

Architecture 

Multi-Layer Perceptrons 

(MLPs) [11] 

Maps raw features to a latent 

vector space. 

Message Passing 1 to 3 steps via Interaction 

Network (IN) [11] 

Aggregates information from 

neighboring nodes. 

Decoder Dot product + Sigmoid: 

𝜎(𝑧𝐿,𝑖 ⋅  𝑧𝑆,𝑗) [11] 

Predicts probability of species 

presence at a location. 

Library/Framework Jraph library in JAX [11] High-performance GNN 

implementation. 
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2. Reinforcement Learning (RL): RL frameworks are being introduced to optimize multi-objective conservation policies, 

such as guiding ecological restoration to meet both biodiversity and climate targets simultaneously [24]. 

3. Optimal Transport Distances: Innovative mathematical tools are being used to compare the structural similarities of 

biological networks across different continents, identifying "functionally equivalent" species even when taxonomic 

compositions differ [25]. 

4. Cognitive Alignment and Explainable AI (XAI): As models become more complex, the literature emphasizes the need for 

"interpretive sensitivity," where AI representations are anchored in ecologically meaningful concepts like species traits and 

behavioral contexts [26]. 

 

Methodology 
The proposed machine learning framework, "Digital Nature," follows a structured approach to integrate multi-source biological 

data into a decision-making pipeline [4]. This methodology is designed to scale from molecular and individual levels to the 

biogeographic biota level, ensuring that conservation interventions are grounded in both local behavior and global trends [27]. 

 
Figure 1. The "Digital Nature" framework illustrates an integrated pipeline for conservation technology. It begins with 

multi-scale data acquisition from satellite imagery, IoT sensor networks, and individual telemetry devices. This data flows 

through AI-powered processing, including anomaly detection, edge computing, and multi-source fusion. Core AI modeling 

combines deep learning (CNNs) for habitat and species analysis, graph neural networks (GNNs) for ecosystem 

connectivity, and behavioral models for population dynamics. Outputs drive actionable conservation through predictive 

dashboards, spatial planning tools, and real-time interventions. The system completes adaptive management, where 

outcome monitoring and continuous model retraining create a closed feedback loop, ensuring iterative improvement of 

predictive accuracy and conservation effectiveness. 

http://www.fishtaxa.com/


 

357 

  

 

 

 

FishTaxa - Journal of Fish Taxonomy 
Vol 36 Issue 1s, ISSN: 2458-942X 

Journal homepage: www.fishtaxa.com 

 
© 2025 FISHTAXA. All rights reserved 

3.1. Data Acquisition and Multi-Source Integration 

The framework initiates with a "people-centric" data acquisition phase, integrating three primary data streams: 

1. Remote Sensing and Geospatial Data: High-resolution hyperspectral imagery from satellites like EMIT and multispectral 

data from Sentinel-2 are used to map land cover, habitat fragmentation, and soil classification [28]. 

2. In-Situ Automated Sensors: A network of camera traps and passive acoustic sensors provides continuous monitoring of 

wildlife [8]. In 2025, these systems are increasingly using "edge computing" to process data locally on the sensor, reducing the 

bandwidth required for remote areas [8]. 

3. Community and Citizen Science: Data from platforms like iNaturalist and Merlin ID are cleansed and formatted through AI-

based quality control to remove observer bias and validate species identifications [4]. 

 

3.2. Technological Architecture: AI Model Development 

The core of the framework utilizes an ensemble of machine learning architectures tailored for ecological complexity: 

a. Computer Vision and Behavior Recognition: Deep learning models, specifically Convolutional Neural Networks (CNNs), 

are employed for species identification and localization. Beyond simple identification, pose estimation techniques (e.g., 

DeepLabCut) track key body points to classify behaviors such as foraging, courtship, and stress responses [29]. This provides 

the "behavioral latent space" necessary to understand individual-level plasticity [26]. 

b. Graph Neural Networks (GNNs) for Distribution Modeling: The framework adopts a novel bipartite GNN approach to 

model species occurrences. Let 𝐺 =  (𝑉𝑆, 𝑉𝐿 , 𝐸𝐿2𝑆) represent a heterogeneous graph where 𝑉𝑆 is the set of species nodes, 𝑉𝐿 is 

the set of location nodes, and 𝐸𝐿2𝑆 represents detection edges [23]. The model learns the probability of detection 𝑃(𝑒𝐿2𝑆,𝑖,𝑗) 

through message-passing steps that aggregate environmental attributes and species traits [23]. 

c. Mechanistic-ML Hybridization: To overcome the "black-box" nature of deep learning, the framework integrates biological 

mechanistic models [24]. For example, species-specific physiological limits (e.g., thermal tolerance) are encoded as constraints 

within a machine learning model, such as Bayesian Additive Regression Trees (BART), to forecast habitat suitability under 

climate change [30]. 

 

3.3. Decision-Support and Adaptive Management 

The final stage of the methodology involves translating model outputs into actionable strategies. The framework generates "AI-

derived results" that inform: 

● Targeted Interventions: Such as identifying optimal corridors for connectivity or prioritizing anti-poaching patrols [4]. 

● Adaptive Management: Feedback loops allow the models to be refined based on the success or failure of conservation 

outcomes, ensuring the system learns from real-world responses [4]. 

● Cross-Scale Policy: Scaling site-level behavioral data into regional landscape strategies, aligned with Target 1 and Target 3 of 

the KMGBF [12]. 

 

Discussion 
4.1. Scaling from Individuals to Biotas 

The primary strength of the machine learning framework is its ability to bridge different biological levels of organization. Behavioral 

ecology demonstrates that behavior is the mechanism through which individuals experience and respond to the environment. In the 

context of climate change, these individual responses—such as shifts in activity time or microhabitat selection—collectively 

determine the stability of the species' geographic range [1]. Table 4 illustrates how individual-level behaviors identified by the 

framework serve as early warning signals for long-term population stability. 

 

Table 4: Behavioral Plasticity and Climate Resilience in Model Species 

Species Observed Behavioral 

Shift 

Resilience/Outcome 

American Pika Microhabitat 

selection/foraging 

modulation [12] 

Buffering fails at extremes; 50% 

recruitment drop [13] 

Stickleback Transgenerational 

fanning/parental care [15] 

Paternal heatwave exposure 

impairs offspring health [17] 

Stickleback Heat stress memory [18] Recurring heatwaves may 

mitigate some fecundity loss 

[18] 
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Grasshopper 

Mouse 

Cooperative foraging 

strategies [19] 

AI agents and mice develop 

identical waiting behaviors [19] 

Reef Fishes Breakdown of competitive 

aggression [12] 

Synchronous shifts after coral 

bleaching events [12] 

 

A critical finding in the 2025 literature is the impact of "heat stress memory" and transgenerational plasticity (TGP). In model 

species like the threespine stickleback, short-term exposure to heatwaves has been shown to dampen cortisol responses and reduce 

parental care in fathers, which subsequently affects the body condition and swimming performance of offspring. This suggests that 

"invisible barriers" to range expansion may exist even when the abiotic conditions appear suitable; if a population's (grand)parents 

have been compromised by transient extreme events, the population may lack the fitness to colonize new areas [15]. The AI 

framework identifies these patterns by integrating longitudinal demographic data with high-frequency environmental sensing, 

detecting declines in "metapopulation capacity" before they manifest as total range contractions [13]. 
 

4.2. Case Study: Behavioral Plasticity in Alpine Specialists 

The American pika (Ochotona princeps) provides a definitive test case for this integrated approach. Pikas are highly sensitive to 

high temperatures and have been considered harbingers of global warming. While simple climate-based SDMs often predict their 

total extirpation from lower elevations, mechanistic models that include "behavioral buffering"—specifically the pika's ability to 

modulate foraging time and retreat into cool rock subsurface spaces—reveal a more nuanced risk profile [1]. 
 

 

Figure 3. Comparative results for pika and stickleback populations. (Left) Long-term LTER data indicates a severe 

decline in pika recruitment—dropping by more than 50% since the 1980s—driven by thermal stress (GDD) despite 

behavioral buffering attempts. (Right) Threespine sticklebacks exhibit transgenerational dysfunction following heatwaves, 

including a dampening of cortisol responses and a significant reduction in paternal fanning, which impairs the swimming 

performance of offspring. The framework identifies these "hidden" demographic collapses by linking individual 

behavioral shifts to long-term population stability. 
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The 2025 census data from Niwot Ridge, Colorado, presents a troubling signal that behavioral buffering may have its limits. 

Recruitment of juveniles has plummeted by roughly 50% since the 1980s [14]. AI-driven analysis of these long-term datasets 

indicates that recruitment declines inversely with "growing degree-days," a metric of warm-season temperature [31]. The framework 

interprets this not just as a thermal issue, but as a connectivity failure; young pikas may be unable to migrate through increasingly 

warm "valleys" to reach new alpine habitats, leading to populations dominated by older adults and setting the stage for localized 

extinctions [32]. 

 

4.3. Coevolutionary Mosaics and Community Stability 

Beyond single-species dynamics, the framework addresses the "geographic mosaic of coevolution" [1]. Interactions between 

species, such as the predatory relationship between grasshopper mice (Onychomys spp.) and bark scorpions (Centruroides spp.), 

are geographically variable and shaped by past climatic changes [33]. Grasshopper mice have evolved complex neurogenetic 

adaptations "evolutionary magic” that allow them to utilize scorpion venom as an analgesic, essentially turning the prey's greatest 

weapon against it [34]. 
 

Machine learning research in 2024 and 2025 has begun to compare these biological strategies with artificial agents. Studies using 

multi-agent reinforcement learning have shown that mice and AI agents develop strikingly similar behavioral strategies (e.g., 

waiting behavior, partner-related information encoding) when coordinating actions for mutual reward [35]. This "cognitive 

alignment" suggests that fundamental principles of cooperation and competition transcend biology . For conservation, this implies 

that the loss of a key member in an interaction network—due to a climate-driven range shift—could trigger a cascading failure of 

the community’s social and ecological structure. 

 
 

4.4. The Synergy of Fragmentation and Climate Change 

Habitat fragmentation is the most significant contemporary driver of biodiversity loss, affecting over half of the world's forests [13]. 

In the tropics, shifting agriculture accounts for 61% of fragmentation, while forestry and wildfires dominate temperate and boreal 

regions. The "synergy" between fragmentation and climate change is particularly lethal; fragments reduce the "permeability" of the 

landscape, trapping species in habitats that are becoming thermally unsuitable. 
 

The AI framework identifies these bottlenecks by measuring "connectivity-based fragmentation," which aligns more closely with 

ecological functions than traditional "structure-based" metrics [13]. A 2025 study showed that while some structure-based methods 

indicated only a 30% increase in fragmentation, connectivity-based measures revealed that up to 80% of tropical forests have lost 

critical links. The framework's ability to map these "ecological continuities" allows for the design of "climate refugia" and corridors 

that are specifically tailored to the movement behaviors of different species groups [36]. 
 

Results 
5.1. Global Assessment of Conservation Progress (2024-2025) 

The implementation of the machine learning framework at a global level provides a clear, albeit grim, picture of current trends. The 

2024 Living Planet Index confirms a 73% average decline in monitored populations but also reveals that exactly 50% of studied 

populations are in decline while 43% are stable or increasing. This "balanced" decline suggests that conservation interventions in 

some regions are successfully stabilizing populations, even if the global average continues to fall [3]. 
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Figure 4. Analysis of global forest fragmentation trends. Connectivity-based indices reveal that 51–67% of forests globally 

and up to 80% of tropical forests experienced increased fragmentation between 2000 and 2020. Shifting agriculture and 

forestry remain the dominant drivers. Crucially, strict protection was found to reduce fragmentation rates by 82% 

compared to unprotected areas, highlighting the role of Target 3 of the KMGBF in maintaining ecological continuity. 

 

In terms of spatial protection, the 2025 Species Protection Index (SPI) for terrestrial vertebrates reached 50.9, reflecting a 3.1-point 

increase over the previous year [17]. Birds show the highest global SPI (62), followed by mammals (55), while amphibians (44) 

and reptiles (43) remain the least protected taxonomic groups.17 This taxonomic bias reflects the "data shortfall" identified in earlier 

research, where automated monitoring systems remain heavily focused on large, charismatic vertebrates [8]. 
 

5.2. The Impact of Protected Areas on Fragmentation 

A major result of the 2025 Science-led assessment is the validation of protected area effectiveness. Tropical forests that are "strictly 

protected" experienced 82% less fragmentation than comparable unprotected areas. Less strictly protected zones showed a 45% 

reduction [37]. These findings underscore that the "30x30" target is biologically sound, provided that protection is strict and 

geographically targeted toward high-connectivity areas [11]. Table 5 quantifies the current state of global forest connectivity, noting 

that connectivity-based indices reveal far higher fragmentation rates than previous structural metrics. 
 

Table 5: Drivers and Rates of Global Forest Fragmentation (2000–2020) 

Region Primary 

Anthropogenic 

Driver 

Increase in Fragmentation 

Tropical 

Forests 

Shifting Agriculture 

(61%) [8] 

58–80% (Connectivity-based) 

[8] 
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Temperate 

Forests 

Forestry (81%) [8] 51–67% (Global average range) 

[9] 

Boreal 

Forests 

Wildfires and 

Forestry [8] 

High loss of carbon and 

connectivity links [8] 

Protected 

Areas 

Strict Protection 

(Strict PAs) [8] 

82% less fragmentation than 

unprotected [8] 

 

5.3. Species-Specific Breakthroughs 

a. American Pika Recruitment: Long-term LTER data analyzed via machine learning shows a severe decline in recruitment on 

Niwot Ridge. The annual number of juveniles per capture fell by over 50%, with high temperatures (growing degree-days) 

being the dominant driver [14]. 

b. Stickleback Heatwave Memory: 2024/2025 studies confirmed that "heat stress memory" can mitigate some negative effects 

on growth and fecundity if the stressors are recurring, suggesting that some species may cope with increasing heatwave 

frequency better than previously thought. However, singular extreme events still lead to long-term parental care dysfunction 

[38]. 

c. Graph Neural Network Accuracy: The GNN approach to SDMs achieved AUCROC scores significantly higher than 

traditional linear models, particularly in data-poor regions like the Australian Wet Tropics, by leveraging multi-modal features 

including group-level (bird/plant) information [39]. 

d. AI for Soil and Habitat Mapping: Ensemble ML algorithms (XGBoost/Random Forest) achieved 93-94% accuracy in 

delineating critical habitats like mangroves and mapping soil types for afforestation planning [10]. Table 6 presents the 

benchmark performance of various machine learning architectures in ecological and geospatial classification tasks. 

 

Table 6: Performance Metrics of Ensemble AI Models for Conservation 

AI Model 

Type 

Specific Application Accuracy/Performance 

Bipartite 

GNN 

Species Distribution Modeling 

(SDM) [11] 

0.82–0.94 AUCROC [11] 

XGBoost/RF Soil Classification & Habitat 

Mapping [20] 

93–94% Accuracy [20] 

BART Marine Turtle Habitat 

Suitability [21] 

>0.90 AUC [21] 

Pose 

Estimation 

Animal Behavior Recognition 

[6] 

>94% for multi-scale deep 

features [22] 

Astrophysics-

ML 

Invasive Plant Prediction [10] >90% Prediction Accuracy 

[10] 

 

Conclusion 
The integration of individual behavior and global biogeography through a machine learning framework represents a transformative 

shift in the ability to address the biodiversity crisis. Findings from 2024 and 2025 emphasize that the field has moved beyond a 

phase of simple observation and entered an era of “actionable climate science,” where the speed and precision of artificial 

intelligence are essential for the survival of the biosphere. 

The framework proposed here, supported by the latest empirical data, leads to several high-order conclusions: 

● Behavior as a Sentinel: Individual behavioral metrics—such as juvenile recruitment and transgenerational plasticity—are 

more sensitive indicators of extinction risk than simple geographic presence. AI allows us to monitor these "sentinel behaviors" 

at scale. 

● Fragmentation as a Binding Constraint: The 80% fragmentation rate in tropical forests is the primary barrier to climate-

driven range shifts. Protecting the 30% designated by the KMGBF will only be effective if AI-derived connectivity metrics 

inform the placement of these areas. 
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● The Power of Synergistic Policy: Integrating climate and biodiversity targets through reinforcement learning can improve 

conservation efficiency by 37% and reduce government spending by 40%. 

● Cognitive Alignment and Ethics: The future of AI in conservation must be "people-centric." Technological solutions must 

respect the rights and knowledge of Indigenous Peoples and Local Communities (IP and LCs) to ensure that "Digital Nature" 

serves both biological and social justice. 

 

As the field advances toward 2030, the “Digital Nature” framework provides a critical bridge for translating complex eco-

evolutionary legacies into a sustainable future. By mobilizing biogeographers, behavioral ecologists, and data scientists within a 

unified transdisciplinary paradigm, research efforts can shift from documenting biosphere decline toward actively engineering 

ecological resilience. The window of opportunity remains open, but only through the rapid deployment of these integrated, AI-

driven solutions. Table 7 provides a roadmap for policy implementation, utilizing the framework's predictive power to maximize 

the efficiency of conservation spending. 
 

Table 7: Strategic Policy Recommendations for the 2030 Biodiversity Targets 

Priority Area Action Recommended (2025–

2030) 

Expected Outcome 

Spatial 

Planning 

Integrate GNN-based 

connectivity into Target 1  

Enhanced ecological 

continuities between PAs. 

Synergy 

Finance 

Align NDCs with NBSAP targets 40% reduction in 

government spending  

Subsidies 

Reform 

Redirect $1.7 trillion in harmful 

subsidies 

Mitigate drivers of habitat 

loss and overexploitation. 

Nature 

Restoration 

Protect "Irrecoverable Carbon" 

(Peatlands/Mangroves)  

Co-benefits for climate 

(37% mitigation) and nature  

Equity & 

Ethics 

FPIC for digital monitoring in 

Indigenous lands  

People-centric AI roadmaps 

for local communities. 
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