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Abstract 
Lipids play a significant role in growth and various metabolic activities in fish, inclusion of appropriate level of lipid is therefore 

essential in aquaculture. A 70-day feeding trial was conducted to evaluate the effect of dietary lipids levels on growth 

performance, hemato-biochemical parameters, serum parameters, intestinal enzyme activity, and expression of genes involved in 

long chain polyunsaturated fatty acids in scale carp fingerlings. Cyprinus carpio var. communis fingerlings (1.57 ± 0.02 g/fish) 

were fed isonitrogenous diets (428 g/kg crude protein) containing varying lipid levels (20, 40, 60, 80,100 and 120 g/kg). Fish were 

fed twice daily to triplicate group of 20 fish per tank at 09:00 and 16:00 hours at the rate of 4% body weight/day. The results show 

that growth parameters including live weight gain (LWG%), protein efficiency ratio (PER), specific growth rate (SGR%), feed 

conversion ratio (FCR) and proximate composition vary significantly (P < 0.05) with different dietary lipid levels. While, no 

significant (P > 0.05) differences in body ash content were observed among the treatments. Hematological and serum parameters 

also showed significant variation among the treatment. Higher enzymatic activity, with the exception of amylase, was observed at 

60.0 g/kg lipid diet. Fatty acid desaturase 2 (FADS2) and elongase of very long chain fatty acids (ELOVL5) mRNA showed 

higher relative expression at 60.0 and 80.0 g/kg lipid fed diets, respectively. Based on the findings of quadratic regression analysis 

the optimal dietary requirement of linseed oil as a lipid source for maximum growth in scale carp fingerlings was established at 

68.0 g/kg in presence of 20.0 g/kg of cod liver oil of dry diet. 
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1. Introduction 
Fishes have higher dietary protein requirement than mammals and birds because fish primarily depend on protein to fulfill their energy 

requirement (Li et al., 2020; Li et al., 2021). However, excessive protein content in diet drives up feeding expenses and also results 

in sub-optimal growth performance and higher nitrogen excretion (Talukdar et al., 2020; Pang et al., 2024). Therefore, to optimize 

the protein utilization, diets have been designed with increased amounts of energy sources other than proteins, such as lipids and 

carbohydrates, that reduce the reliance on dietary protein. Apart from energy, lipids also provide vital functional components such as 

fatty acids, phospholipids, and cholesterol, which play a crucial role in fish growth, development, and overall well-being (Leaver et 

al., 2008; Sun et al., 2013). It is widely recognised that incorporating lipids into fish diets helps minimize protein usage, improve 

growth rates, and make aquaculture more cost-effective while reducing its environmental footprint (Wang et al., 2005; Xie et al., 

2021). 

The inclusion of appropriate lipid levels in the diets of fish is both quantitatively and qualitatively significant, due to its 

fundamental involvement in biological functions. These include acting as the main source of energy for metabolism as well as 

supplying vital fatty acids required for physiological processes, assisting in the absorption and distribution of fat-soluble vitamins, 

and preserving the structural integrity and fluidity of cell membranes, all of which are essential for the best possible development, 

reproduction, and growth (Wang et al., 2021; Sargent et al., 2002). However, insufficient lipid levels in fish diets often result in 

suboptimal growth performance (Perez-Velazquez et al., 2016). Conversely, overabundance of dietary lipids in the diet negatively 

affects fish health while also diminishing growth and feed efficiency (Peng et al., 2017; Wang et al., 2021). Moreover, diets with 

elevated lipid levels are more prone to oxidation, which can affect their quality over time (Pang et al., 2024). Optimum dietary lipid 

levels for various fish species are influenced by multiple factors, such as life stage, species-specific requirements, environmental 

conditions, and overall nutritional balance. Hence, determining the appropriate lipid levels of culturable fish species is crucial for 

nutritional efficiency, environmental sustainability, and economic viability (Chupal et al., 2021). 

In general, humans primarily rely on marine organisms for the supply of n-3 LC-PUFAs (Pereira et al., 2003; Marrero et al., 

2022). Due to this, a significant number of species are now experiencing overexploitation, which has resulted in a scarcity of these
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natural lipid sources. Aquaculture has been suggested as the most promising option for satisfying the rising need for fish and other 

seafood on a worldwide scale (FAO, 2020). Ironically, finfish aquaculture feed production is vastly reliant on fish meal and fish oil 

(FAO, 2020), creating an unsustainable approach that confines its growth. Therefore, it's essential to look for an alternative to fish 

oil, especially the vegetable oils, as they are more cost-effective and easier to obtain. Consequently, vegetable oils (VOs) lack LC-

PUFAs, which can negatively impact fish health and diminish their nutritional value for human consumption (Perez et al., 2014; 

Marrero et al., 2022). So, amidst this backdrop, an escalating interest has emerged in unraveling the capacities and mechanisms 

governing the steps in the production of LC-PUFAs in cultured fish species. 

Freshwater fishes exhibit a notable capability to convert C18 PUFAs into C20-22 PUFAs, including arachidonic acid (AA), 

eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) (Ren et al. 2012). The biosynthetic pathways of LC-PUFAs involve 

the synergistic action of elongases (ELOVL) and fatty acyl desaturases (FADS), such as FADS2 and ELOVL5 (Castro et al., 2016; 

Xie et al., 2021). FADS2 is a membrane-bound protein located in the endoplasmic reticulum, serving as the initial enzyme in the 

production of LC-PUFAs containing 20 or more carbon atoms. FADS operate by introducing a double bond between an existing 

double bond and the carboxylic group. While elongases serve as rate-limiting enzymes crucial for elongating fatty acids in the pathway 

(Castro et al. 2016). ELOVL5 exhibits preference for elongating C18 and C20 substrates, while ELOVL2 exhibits preference for C20 

and C22 PUFA as substrates (Monroig et al., 2009). However, the ability of elongation and desaturation varies among different fish 

species (Monroig et al., 2011), which warrants that the exact mechanism of these genes with respect to species is imperative. 

C. carpio var. communis is an omnivorous fish commonly known as scale carp. The common carp is a highly viable large-

sized candidate species for freshwater aquaculture, offering significant potential for commercial production as well. It is a member 

of the largest freshwater family, Cyprinidae, renowned for its high nutritional value, delightful taste, easy digestibility, affordability, 

and widespread availability. Owing to its rapid growth and ease of cultivation, the fish is identified as one of the most extensively 

cultivated species in freshwater aquaculture worldwide (Guler et al., 2008; Yousefi et al., 2020; Hassan et al., 2022). 

The objective of the present study was to establish the dietary lipid requirement and to explore the impacts of various dietary 

lipid levels on growth, fatty acid composition, hematology, proximate composition, serum profile and relative mRNA expression of 

genes involved in LC-PUFAs biosynthesis. 

 

Materials and Methods 
2.1 Formulation and Prepration of experimental diets 
Six isonitrogenous diets (428 g/kg crude protein) with varying lipid levels, containing graded levels of gross energy varied from 16.48- 

20.25 KJ/g, dry diets were designed. The diets were formulated with casein and gelatin as source of protein, cod liver oil and linseed 

oil were used as lipid source. The level of linseed oil was varied at 20, 40, 60, 80, 100 and 120 g/kg, whereas cod liver oil was fixed 

at 20 g/kg in all the experimental diets, the diets were labelled as D1, D2, D3, D4, D5 and D6 (Table 1). Gelatin was dissolved in 

water through the process of heating and stirring in a bowl. Subsequently, casein and other ingredients were thoroughly mixed using 

a Hobart Corporation mixer. Once the mixture reached at 40 °C, vitamins premixes and oils were added to it with constant stirring. 

Lastly, carboxymethyl cellulose (CMC) was added and thoroughly mixed in order to obtain dough, later on the diet was processed 

using a pelletizer which was equipped with a 2mm die for the production of suitable sized pellets. However, the moisture content was 

reduced below 100 g/kg through the desiccation in hot air oven at 40 ℃. The dried pellets were ground up, sieved and kept in storage 

at 4 °C until use. 

      Table 1. Composition of experimental diets used for estimating the lipid requirement of common carp, Cyprinus carpio 

                      var. communis fingerlings. 
 Experiments diets 

Ingredients (g kg-1, dry diet) 20.0 (D1) 40.0 (D2) 60.0 (D3) 80.0 (D4) 100.0 (D5) 120.0 (D6) 

Casein1 414.60 414.60 414.60 414.60 414.60 414.60 

Gelatin2 103.60 103.60 103.60 103.60 103.60 103.60 

Dextrin 220.0 220.0 220.0 220.0 220.0 220.0 

Cod liver oil3 20.0 20.0 20.0 20.0 20.0 20.0 

Linseed oil4 20.0 40.0 60.0 80.0 100.0 120.0 

Mineral mix5 40.0 40.0 40.0 40.0 40.0 40.0 

Vitamin mix 6 30.0 30.0 30.0 30.0 30.0 30.0 

Carboxymethyl cellulose 40.0 40.0 40.0 40.0 40.0 40.0 
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Alpha cellulose 111.80 91.80 71.80 51.80 31.80 11.80 

Total 1000 1000 1000 1000 1000 1000 

Calculated crude protein (g 
kg-1) 

428.0 428.0 428.0 428.0 428.0 428.0 

Gross energy7 (kJ g-1, dry 
diet) 

16.48 17.23 17.99 18.74 19.49 20.25 

Proximate composition of experimental diet (g kg-1) 

Dry matter 912.32 913.65 914.62 916.65 917.82 918.80 

Lipid content 428.4 428.9 427.7 428.8 428.2 427.6 

Analyzed crude protein 41.63 61.62 80.84 101.62 121.22 139.68 

Estimated Gross energy         

(kJ g-1, dry diet) 

16.65 17.41 18.08 18.81 19.61 20.33 

1Crude protein (80%), 2Crude protein (93%), Loba Chemie, India; 3Sea cod pure cod liver oil, Universal Nutri science Private Limited, Mumbai, India. 4India unrefined 

Linseed oil, Nashiel, Chemical Private Limited, Ahmedabad, India. 5Halver 2002 mineral (AlCl3. 6H2O, 150; ZnSO4. 7H2O, 3000; CuCl,100; MnSO4.4-6H2O, 

800; KI,150; CoCl2.6H2O,1000 mg kg-1; plus USP # 2 Ca (H2PO4)2. H2O, 135.8; C6H10CaO6 327.0; C6H5O7Fe.5H2O, 29.8; MgSO4.7H2O, 132.0; KH2PO4 
(dibasic), 239.8; NaH2PO4.2H2O, 87.2; NaCl, 43.5 (g kg-1); 6vitamin mix (choline chloride 5000: thiamin HCL 50; riboflavin 200; pyridoxine HCL 50; nicotinic acid 
750; calcium pentothenate 500; inositol 2000; biotin 5.0; folic acid 15; ascorbic acid 1000; menadione 40; alpha-tocopheryl acetate 400; cyanocobalamine 0.1 (g kg-

1). 6Calculated on the basis of physiological fuel values 4.5, 3.5 and 8.5 kcal g-1 for protein, carbohydrate and fat, respectively (Jauncey, 1982).7Estimated on Bomb 
calorimeter (Model 6400; Parr, Moline, Illinois, USA). 

2.2  Feeding trial 
C. carpio var. communis fingerlings were obtained from the Govt. Fish Seed Farm, district Manasbal for the purpose of this 

experiment. Which were transported in oxygen filled polythene bags to experimental station at University of Kashmir. Subsequently, 

the fish were prophylactically treated with a 1:3000 solution of KMnO4, so as to remove any infection and stocked in circular plastic 

fish tank having water capacity of 600 L. Before starting the feeding trial, the fish were acclimated in laboratory conditions by 

feeding H440 diet (Halver, 2002) for a duration of fortnight. Later on, desired number of acclimated fingerlings, 1.59 ± 0.02 g 

(ABW± SD), were randomly distributed in 18 circular troughs with 70 L water holding capacity, supplied with continuous water 

flow. 20 fish were housed in tank for each treatment level 3 replicates were made. The rate of water flow for each tank was 

consistently kept at a range of 1.0-1.5 liters per minute. The diets were fed at the rate of 4% body weight/day into two equal amounts 

and fed at 09:00 and 17:00, hours daily. Fish were starved on the days designated for recording weekly weights. A digital top-loading 

balance was used to measure the initial and weekly weights (Sartorius CPA-224S, Goettingen, Germany). The fish excreta were 

removed through siphoning every morning before the daily feeding. Additionally, any unconsumed feed, if detected, was gathered, 

oven dried, and re-weighed to estimate the exact amount of feed consumed by the fish during the entire period feeding trial. 

2.3  Proximate analysis 
On the initiation of the feeding trial, 40 fish from the acclimatized lot were sacrified for determination of somatic indices and initial 

proximate analysis. Similarly, after the completion of the experiment, the final weight from each replicate was recorded on the last 

day. Subsequently, 12 fish were chosen for analysing the final proximate composition from each dietary treatment. The proximate 

composition of experimental diets, as well as the initial and final body constituents was analysed by using standardized methods 

(AOAC, 1995). All experimental samples were subjected to oven drying at a temperature of 105 ± 1°C for a duration of 24 hours to 

ascertain the percentage of dry matter. Subsequently, the crude protein content in each sample was measured using Kjeldahl principal 

with the help of Kjeltec, 8400 (FOSS, Denmark). For estimating crude lipid, the solvent extraction method was employed with 

petroleum ether 40-60 °C B.P and the extraction was carried out with the help of soxtec automatic analyzer, Awanti 2050 (FOSS 

Denmark). The content of ash of both feed and fish samples was determined after incinerated the samples in muffle furnace at 650 °C 

for 4-6 hours. 

 
2.4  Water quality analysis parameters 
During the entire feeding trial physico-chemical parameters such as, pH, dissolved oxygen (DO), temperature, free carbon dioxide 

(CO₂), and total alkalinity, adhering to standard methods (APHA, 1992). Before the daily feeding, water samples were taken for 

examination of above parameters. Using a mercury thermometer, the water's temperature was found to be between 24.3-25.9 °C. 

Winkler's iodimetric method was used to analyse, DO content which determined to be between 6.5 and 7.4 mg/L. Similarly, titrimetric 
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techniques were used to measure total alkalinity and free carbon dioxide, which showed values between 87 to 124 mg/L and 4.4 to 

6.8 mg/L, respectively. With the application of a digital pH metre (pH ep-HI 98107, USA), the pH was tested and was found to be in 

between 7.2 to 7.5. 

 
2.5  Blood collection and analysis 
Five fish from each dietary treatment (n = 5× 3) were selected randomly for the assessment of the hematological parameters. For 

collection of blood caudal peduncle was severed, and the samples were taken for estimation using heparinized (Na-heparinized) and 

non-heparinized capillary tubes. All hematological analyses were conducted within a 2-hours after each extraction. Hemoglobin 

content (Hb), red blood cell (RBC), white blood cell (WBC) counts, and hematocrit (Hct%) content were to be determined from 

blood taken in heparinized tubes. The length and weight of each fish were recorded prior to blood collection to assess the condition 

factor (K). However, the liver was dissected from the same fish for estimation of the hepatosomatic index (HSI) specimen which were 

sacrificed for blood collection. 

 
2.6 Analysis of serum parameters 
Blood collected in tubes without heparin underwent rapid centrifugation in a microcentrifuge (REMI-12C) at 4100 × g at 4 °C for ten 

minutes to extract serum. After serum separation, reagent rotors were loaded with serum samples using a 100 μL pipette to test for 

different parameters. Every dosage was subjected to triplicate tests to assess variables including, albumin, globulin, cholesterol, 

triglycerides and total protein as well as ALT and AST. Assessment of the serum analytes was carried out using an automated vet 

scan biochemistry analyzer VS2 (Abaxis, USA). 

 
2.7  Intestinal enzymatic activities 
The intestine samples (n = 3× 3) were gathered and homogenized within a saline solution at a proportion of 10 volumes. After,  that 

the homogenate underwent centrifugation for a duration of 20 minutes at 4 °C at 6000 × g in order to collect the supernatant, which 

was then frozen at -20 °C for further examination. The protease activity was measured using the procedure outlined by Moore and 

Stein (1948) employing bovine serum albumin as the substrate, while the technique outlined by Furne et al. (2005) was utilized to 

assay the activities of lipase and amylase. 

 
2.8  RNA isolation and Quantitative (q) PCR 
TRIzol method was used to extract the RNA from fish muscles. Briefly, equal weight of fish tissues (100 mg) was homogenized in1 

ml of TRIzol reagent (Invitrogen) was added and allowed to stand at room temperature for 5 minutes. Following this, 200 µl of 

chloroform was incorporated into the mixture, which was then allowed to incubate for 2 minutes before being subjected to 

centrifugation at 14,000 rpm for 15 minutes. The liquid phase was moved to a fresh, sterilized tube. Subsequently, 0.5ml of pure 

isopropanol were introduced, and the mixture underwent incubation for a duration of 10 minutes and underwent for centrifugation at 

14,000 rpm for another 10 minutes. Carefully supernatant was discarded, pellet was washed with 75% ethanol (0.5ml) and centrifuged 

at 7000 rpm for 5 minutes. Then pellet was air dried for 10 minutes followed by dissolving the pellet in nuclease free water. The equal 

amount of RNA from all samples was then reverse transcribed into complementary DNA using the Thermo Fischer Scientific 

RevertAidTM first strand cDNA synthesis kit. qPCR was carried out according to the manufacturer's instructions using PowerUpTM 

SYBRTM Green master mix (Thermo Fischer Scientific) and the CFX 96 Real-Time System (Bio-Rad). The oligonucleotide sequences 

used for amplification in qPCR are provided in Table 2. 

  Table 2. Primers used for the real time PCR analysis. 

 Gene Forward Primer (5՛-3՛) Reverse primer (3՛-5՛) Amplicon 
size (bp) 

Accession 
no. 

Primer 
efficiency (%) 

FADS 2 AGAAATCCGGAGAAATCT GGCT ACTGGCGGTTTAGTTGA TGTCT 122 AF309557 102.25 

ELOV L5 GATTGACGACACTTCGTC CG 
՛ 

 
GAAAGTGTGGCTGCAGT GTG 

121 KF924199 107.23 

β- actin GGACTCTGGTGATGGTGT CA CTGTAGCCTCTCTCGGT CAG 138 M24113.1 99.89 

    FADS2= Fatty acid desaturase, ELOVL5= Elongase of very long chain fatty acids 5 
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2.9  Statistical analysis. 
The results were expressed as mean ± SEM. One-way analysis of variance (ANOVA) (Snedecor and Cochran, 1967; Sokal and Rohlf, 

1981) followed by Duncan's multiple range test, was used to evaluate significant difference among the treatments. A significance 

threshold of P < 0.05 was used. The data analysis was performed by using SPSS Statistics Version 22.0 (SPSS Inc., Chicago, IL, 

USA). Additionaly, the optimal dietary lipid level required for common carp fingerlings was determined using a second-degree 

polynomial regression analysis (Zeitoun et al. 1976). 

 

 3. Results 
3.1 Growth performance 
The growth performance and feed utilization data of fingerlings of scale carp fed various levels of lipid-based testing diets for 70 days 

are presented in table 3. The survival of fish during the entire growth trial was recorded 100 percent. The highest values of growth 

attributes, like live weight gain (LWG%), protein efficiency ratio (PER), specific growth rate (SGR%) and lowest feed conversion 

ratio (FCR) was observed in the group that supplied a diet containing 60.0 g/kg of lipid. While as, a notable decline in growth 

performance (P < 0.05) data occurred, when the lipid content was increased from 80.0 g/kg to 120.0 g/kg, respectively. LWG and 

FCR data were employed in quadratic regression analysis to determine the optimal lipid requirement for the maximum growth of 

scale carp fingerlings. The results of the present study indicate that the optimal inclusion level of linseed oil as a dietary lipid source for maximum 

growth of C. carpio var. communis fingerlings was approximately 68.0 g/kg, in the presence of 20.0 g/kg cod liver oil in the diet. 

 

  Table 3 .  Growth, FCR, PER, protein deposition ratio and percentage survival of common carp, C. carpio var. communis   

fingerlings fed diets containing varying levels of dietary lipid levels for 10-weeks*. 
 Varying lipid levels (g kg-1, dry diet) in the experimental diets 

  

 20.0 (D1) 40.0 (D2) 60.0 (D3) 80.0 (D4) 100.0 (D5) 120.0 (D6) 

Average initial weight (g) 1.55 ± 0.01 

 

1.58 ± 0.01 

 

1.59 ± 0.01 

 

1.55 ± 0.01 

 

1.57 ± 0.01 1.60 ± 0.013 

 

Average final weight (g) 4.90 ± 0.02e 

 

6.23 ± 0.07c 

 

7.60 ± 0.06a 

 

7.10 ± 0.05b 

 

6.28±0.04c 5.57±0.03d 

Live weight gain (%)1 216.12 ± 3.29e 

 

294.30 ± 3.77c 

 

377.98 ±4.37a 

 

358.06 ± 3.8 b 

 

300.00 ± 3.56c 

 

266.24 ± 3.24d 

 

Specific growth rate (%)2 1.64 ± 0.01e 

 

1.96 ± 0.01c 

 

2.23 ± 0.01a 

 

2.17 ± 0.01b 

 

1.97 ± 0.01c 
 

1.78 ± 0.01d 
 

Feed conversion ratio (FCR)3 2.46 ± 0.02 a 

 

1.75 ± 0.03c 

 

1.35 ± 0.02d 

 

1.56 ± 0.03c 

 

1.87 ± 0.02b 
 

2.04 ± 0.03a 
 

Protein efficiency ratio (PER)4 0.94 ± 0.01d 

 

1.33 ± 0.03 b 

 

1.71 ± 0.04 a 

 

1.49 ± 0.03 ab 

 

1.24 ± 0.02c 
 

1.14 ± 0.01 d 
 

Body protein deposition (BPD%)5 14.44 ± 0.35cd 

 

18.83 ± 0.37 b 

 

29.94 ± 0.52a 

 

24.41 ± 0.23b 

 

19.94 ± 0.56c 

 

17.59 ± 0.47d 

 

Survival (%) 100 100 100 100 100 100 

    *Mean value of 3 replicates ± SEM; Mean values sharing the same superscript are not significantly different (P > 0.05). 
1Live weight gain (%), Final body weight–initial body weight/initial weight×100 
2Specific growth rate (SGR %) = 100 × (In final wet weight (g)-In initial wet weight g)/duration (days) 
3Feed conversion ratio (FCR) = Dry weight of feed consumed / Wet weight gain 

4Protein efficiency ratio (PER) =Wet weight gain (g) / Protein consumed (g, dry weight basis) 
5Body protein deposition (BPD %) = 100 × (BWf × BCPf) – (BWi × BCPi) / [TF × CP] 

Where BWi and BWf=mean initial and final body weight (g), BCPi and BCFf = mean initial and final percentage of muscle protein 

TF=Total amount of diet consumed and CP=Percentage of crude protein of the diet. 
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3.2 Whole body composition 
The data on whole-body composition of the experimental fish, obtained at the conclusion of the 10-week feeding trial, also showed 

significant (P < 0.05) differences with respect of the inclusion of various lipid levels (Table 4). There was an upward trend observed 

in whole body crude protein content of each group with the increase of lipid in the diet up to 60.0 g/kg, however, beyond this level 

the protein content of fish significantly decreased. while, body fat content exhibited significant (P < 0.05) increasing pattern with each 

incremental level and reaching its highest peak up to the group that fed a diet containing 120.0 g/kg lipid, which was the highest lipid 

inclusion level in the present study. There was no notable difference (P > 0.05) observed in whole-body ash content across the 

incremental levels. The highest value of condition factor (K) was seen in fish group fed a diet containing 60.0 g/kg lipid and reduced 

thereafter. The hepatosomatic index (HSI) progressively increased with the addition of each lipid levels and the highest value of HSI 

was noticed in the group of fish that were fed with 120.0 g/kg lipid in the diet. 

 

Table 4. Carcass composition, condition factor, hepatosomatic index of common carp, C.  carpio var. communis fingerlings 

     fed diets containing varying levels of dietary lipid levels for 10-weeks*. 
 Varying lipid levels (g kg-1, dry diet) in the experimental diets 

 Initial  20.0 (D1) 40.0 (D2) 60.0 (D3) 80.0 (D4)   100.0 (D5) 120.0 (D6) 

   Moisture (%) 77.32± 0.31 76.88 ± 0.25a 75.71 ± 0.37b 74.10 ± 0.31c       73.47 ± 0.15d    72.67 ± 0.19d    72.22 ± 0.16d 

 

Protein (%) 

 
13.90 ± 0.13 

 
12.85 ± 0.13f 

 
14.33 ± 0.9 e 

 
16.89 ± 0.6a 

 
16.05 ± 0.7b 

 
15.69 ± 0.6c 

 
15.22 ± 0.9d 

 

Fat (%) 

 

3.67 ± 0.7 

 

4.35 ± 0.9e 

 

4.88 ± 0.7d 

 

5.29 ± 0.5c 

 

5.42 ± 0.6c 

 

5.89 ± 0.7b 

 

6.12 ± 0.8a 

 

Ash (%) 

 

2.45 ± 0.3 

 

2.66 ±0.4a 

 

2.78 ±0.4a 

 

2.88 ±0.4a 

 

2.24 ± 0.3a 

 

2.30 ± 0.2a 

 

2.25 ± 0.3a` 

 

Condition factor (K) 1 

 

1.45 ± 0.04 

 

1.29±0.03e 

 

1.41 ± 0.04d 

 

1.79±0.03a 

 

1.68±0.04b 

 

1.67±0.03b 

 

1.56±0.04c 

 

Hepatosomatic index 

(HSI) 2 

 

1.79 ± 0.06 

 

1.70 ± 0.04c 

 

1.75 ± 0.06c 

 

1.95 ± 0.06b 

 

     2.06 ± 0.04c 

 

2.12 ± 0.07b 

 

2.65 ± 0.07a 

*Mean value of 3 replicates ± SEM; Mean values sharing the same superscript are not significantly different (P > 0.05) 
1Condition factor = body weight (g)/body length (cm3) × 100. 2Hepatosomic index (%) = liver weight (g)/body weight (g) × 100. 

 

3.3 Hematological parameters and intestinal enzyme activities 
In the present study, hematological parameters and intestinal enzyme activity revealed significant (P < 0.05) differences with respect 

to each incremental level of lipid in the testing diets (Table 5). The highest hemoglobin (Hb) content 8.41 g/dl was observed in fish 

fed a diet containing 60.0 g/kg of lipid, while the lowest Hb content was noted with fish group fed 20.0 g/kg (D1) and 120.0 g/kg (D6) 

lipid diets. Hematocrit (Hct) values improved with each increasing lipid levels up to 60.0 g/kg and thereafter a significant decline in 

Hct content was observed. The highest red blood cell (RBC) count of 2.98 × 10 6 mm-3 was also noted in fish fed a diet containing 

60.0 g/kg of dietary lipid, whereas, the lowest value was achieved with fish fed a diet having 120.0 g/kg of lipid. Likewise,  fish 

subjected to varying levels of lipid exhibited notable differences (P < 0.05) in their leukocyte (WBC) count. A significantly higher 

WBC count 2.58 × 104 mm-³ was observed in fish fed the diet containing 120.0 g/kg lipid content. The activities of intestinal digestive 

enzymes of scale carp fingerlings also showed notable alteration with fish fed varying lipid levels. Significantly (P< 0.05) maximum 

activity of protease was observed in fish fed with 60.0 g/kg of lipid. Lipase also shows a similar trend, Nonetheless, no significant 

(P>0.05) difference in amylase activity was noted with the increasing lipid contents in the diet. 
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Table 5. Hematological indices and intestinal enzymatic activities of common carp, C. carpio var. communis fingerlings fed 

diets containing varying levels of dietary lipid for 10-weeks*. 
   

Varying levels of lipid levels (g kg-1, dry diet) in the experimental diets 

 Initial 20.0 (D1) 40.0 (D2) 60.0 (D3) 80.0 (D4) 100.0 (D5) 120.0 (D6) 

Hb (g dL-1) 1 5.03 ± 0.08 6.31 ± 0.10 e 7.42 ± 0.23b 8.41 ± 0.42a 7.74 ± 0.07bc 7.04 ± 0.08 cd 6.69 ± 0.07e 

Hct (%) 2 18.90 ± 0.29 22.92 ± 0.33d 27.50 ± 0.31c 33.86 ± 0.41a 30.40 ± 0.51b 26.75 ± 0.49c 
 

23.66 ± 0.37d 

RBC 
(x106/mm3)3 

2.40 ± 0.03 2.66 ± 0.04 c 2.83± 0.02 b 2.98 ± 0.01a 2.53± 0.03d 2.49 ± 0.02d 2.44 ± 0.02d 

WBC 
(x104/mm3)4 

2.47± 0.02 a 2.42 ± 0.04 ab 2.30 ± 0.03 c 2.16 ± 0.03 d 2.26 ± 0.03 c 2.34 ± 0.02b 2.58 ± 0.03a 

Protease activity 

(U mg/protein) 

10.29 ± 0.09 12.40 ± 0.18e 

 

13.63 ± 0.14d 

 

16.56 ± 0.19c 
 

18.29 ± 0.13 a 
 

17.65 ±0.23b 

 

16.59 ± 0.19c 
 

Lipase activity 
(U mg/ protein) 

0.34 ± 0.04 0.47 ± 0.04e 1.18 ± 0.02 a 1.72 ± 0.02a 1.55 ± 0.04b 1.35 ± 0.04c 1.19 ± 0.03d 

Amylase activity 

(U mg/ protein) 

16.33 ± 0.55 16.66 ± 0.59a 
 

16.54 ± 0.58a 
 

16.49 ± 0.58a 
 

16.44 ± 0.60a 
 

16.42 ±0.63 a 16.38 ± 0.60a 
 

*Mean value of 3 replicates ± SEM; Mean values sharing the same superscript are not significantly different (P > 0.05).  
1Hb, Hemoglobin, 2Hct, Hematocrit. 3RBC, Red blood cell. 4WBC, White blood cell 

 
3.4  Serum indices 

Fish fed various levels of lipid levels over the 10-week feeding trial displayed notable variation (P < 0.05) in serum parameters across 

each incremental level (Table 6). There was a significant increase in serum albumin, total protein, cholesterol and triglycerides levels 

with increasing lipid levels in the diets and reaching maximum with the fish fed 120.0 g/kg of lipid in the diet. In contrast alanine 

transaminase (ALT) and aspartate transaminase (AST) exhibited a decreasing pattern with the gradual increase in lipid in the diet until 

reaching 60.0 g/kg, afterwards an upward trend was observed. 

 

 

 Varying levels of lipid levels (g kg-1, dry diet) in the experimental diets 

 20.0 (D1) 40.0 (D2) 60.0 (D3) 80.0 (D4)   100.0 (D5) 120.0 (D6) 

 

Albumin (g L-1) 

 

11.13 ± 0.02f 

 

     12.51 ± 0.03e 

 

13.71 ± 0.03d 

 

14.50 ± 0.06c 

 

15.44 ± 0.03 b 

 

16.90 ± 0.02a 

 

Globulin (g L-1) 

 

22.10 ± 0.04a 

 

21.50 ± 0.03a 

 

20.50 ± 0.03c 

 

21.52 ±0.04b 

 

21.60 ± 0.03b 

 

22.55 ± 0.02a 

 

Total protein (g L-1) 

 

33.23 ± 0.04c 

 

 34.0 ± 0.06d 

 

34.21 ± 0.04d 

 

36.02 ± 0.09c 

 

37.04 ± 0.03b 

 

39.44 ± 0.01 a 

 

Total cholesterol (mmol L-1) 

 

3.01 ± 0.0 e 

 

3.08 ± 0.02de 

 

3.18 ± 0.04d 

 

3.32 ± 0.4c 

 

3.47 ± 0.04b 

 

3.60 ± 0.2a 

Table 6. Effects of lipid levels on blood serum parameters of common carp, C. carpio var. communis fingerlings fed diets 

containing varying levels of dietary lipids for 10- weeks. * 
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*Mean value of 3 replicates ± SEM; Mean values sharing the same superscript are not significantly different (P > 0.05) 
1Alanine aminotransferases. 
2Aspartate aminotransferase.  

 
3.5  Relative expression of FADS2 and ELOVL5 genes 
In the present study, the impact of lipid levels on the relative mRNA expression levels of FADS2 and ELOVL5 genes in common 

carp, C. carpio var. communis fingerlings were studied (Figures 1 and 2). The highest relative expression of FADS2 and ELOVL5 

mRNA (P < 0.05) in muscle tissue was observed in groups that were fed a diet containing 60.0 and 80.0 g/kg lipid as compared to 

those groups that were fed diets with other lipid levels. 

              
Fig.1 Relative expression levels of Fatty acid desaturase 2 (FADS2) in the muscle of C. carpio var. communis fingerlings fed diets 

containing varied lipid levels (g/kg) over a period of 10 weeks. Results are shown as the mean ± SEM. 

 

               
Fig.2 Relative expression levels of elongase of very long chain fatty acid 5 (ELOVL5) gene in the muscle of C. carpio var. communis 

       fingerlings fed diets containing varied lipid levels (g/kg) over a period of 10 weeks. Results are shown as the mean ± SEM. 
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Triglycerides (mmol L-1) 

 

1.80 ± 0.03c 

 

1.86 ± 0.4d 

 

1.93 ± 0.2d 

 

 2.04 ± 0.2c 

 

2.19 ± 0.3b 

 

2.35 ± 0.3a 

ALT (U L-1) 1 22.93 ± 1.18c 22.58 ± 1.10 a 14.88 ± 1.43c    17.01 ±1.01c 18.78± 1.15b 23.65 ± 1.14 a 

AST (U L-1) 2 138.89 ± 2.64b 134.65 ± 2.51bc 125.11 ± 2.93 d 132.50 ± 2.12c 135.76 ± 2.05b 145.56 ± 3.77a 

http://www.fishtaxa.com/


FishTaxa - Journal of Fish Taxonomy 
Vol 36 Issue 1s, ISSN: 2458-942X 

373 Journal homepage: www.fishtaxa.com © 2025 FISHTAXA. All rights reserved 

 

 

 4. Discussion 

Lipids serve as a vital energy source for both the growth and developmental processes of fish. They are efficiently metabolized by fish 

and are indispensable for ensuring normal growth and physiological development (Guo et al., 2019; Li et al., 2024). In the current study, 

various attributes, like LWG (%), PER, SGR, and BPD, increased when the scale carp fingerlings were supplied with lipid levels in 

the range of 20.0 – 60.0 g/kg, and afterwards, a decreasing trend in these parameters was obtained. It indicates that increasing lipid 

levels within an optimal range can supply adequate energy for fish activity. This allows proteins to be utilized primarily for anabolic 

processes, maximizing their contribution to the development and enhancing fish growth. Conversely, excessive lipid can disrupt the 

balance between energy and protein content in the feed, resulting in reduced growth rates and lower feed efficiency in fish. During the 

present study, scale carp fingerlings fed diets with lipid levels ranging from 80.0 to 120.0 g/kg were associated with a gradual decline 

in LWG, SGR, and BPD. The decrease in growth at high lipid-containing diets could result from the suppression of new fatty acid 

production and a diminished capacity of fish to digest and absorb lipids (Sargent et al., 1989; Luo et al., 2014; Han et al., 2014). Fish 

fed high lipid diets also exhibited an increase in FCR, accompanied by a reduction in both PER and SGR, respectively. The highest 

FCR value was recorded in fish fed with a diet possessing 120.0 g/kg (D6) of dietary lipid, which represents a higher value than the 

values observed in other treatment groups. Similarly, fish fed a diet containing 60.0 g/kg (D3) lipid displayed a significantly higher 

PER content than those fed other diets. These results indicate that higher lipid levels adversely affect nutrient utilization in fish, 

aligning with findings from earlier studies (Chatzifotis et al., 2010; Yong et al., 2015; Royuela et al., 2015; Bonvini et al., 2015). The 

HSI also increased progressively with rising lipid levels and showed the highest HSI was found in fish fed with a diet containing 120.0 

g/kg (D6) lipid, indicating excessive lipid deposition in the liver. An increase in HSI with elevated lipid levels has also been reported 

in previous studies (Mohantay et al., 2008; Xu et al., 2011; Ren et al., 2012; Han et al., 2014). Additionally, fish fed a diet containing 

60.0 g/kg (D3) of lipid demonstrated a higher condition factor, suggesting they were in optimal health, as an adequate lipid supply 

supported vital physiological functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Quadratic regression analysis of live weight gain (LWG%) against varying levels of dietary lipid levels in C. carpio var. 

communis fingerlings 

20 40 60 80 100 120

200

220

240

260

280

300

320

340

360

380

400

LWG
(Y min)

= 355.04 g/kg

LWG
(X min)

= 68.07 g/kg

Y =95.75656+7.06869 X-0.04785 X
2
(R

2
 = 0.9032)

L
iv

e
 w

e
ig

h
t 

g
a
in

 (
%

)

Varying levels of dietary lipids (g/kg)

 

http://www.fishtaxa.com/


FishTaxa - Journal of Fish Taxonomy 
Vol 36 Issue 1s, ISSN: 2458-942X 

374 Journal homepage: www.fishtaxa.com © 2025 FISHTAXA. All rights reserved 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Quadratic regression analysis of feed conversion ratio (FCR) against varying levels of dietary lipid levels in C. carpio var. 

communis fingerlings. 

 

Evaluation of hematological parameters of fish is taken as the most effective approach in studying the physiological condition 

and health status of fish, irrespective of their presence in habitats (Kader et al., 2010; Ahmad et al., 2021). These metrics also 

provide important insights into fish physiology and act as markers of disease, stress, and environmental disruptions that arise in 

aquatic environments. In this study, significant (P < 0.05) variations in hematological parameters were observed in response to 

different levels of lipid inclusion in the diets. Hemoglobin (Hb), hematocrit (Hct%) content, and red blood cell (RBC) counts 

showed an increasing trend, peaking at 60.0 g/kg lipid inclusion level, thereafter a decreasing trend was observed. The higher Hb, 

Hct, and RBC values may be linked due to enhanced growth, which supports efficient oxygen transport in the blood. These findings 

align with earlier studies conducted on Takifugu rubripes (Kikuchi et al., 2009) and Oreochromis niloticus (Kasheif et al., 2011). 

The concentrations of blood proteins, including globulin and albumin, offer valuable information about the overall health of 

fish (Varghese et al., 2020). Albumin levels in the serum significantly increased with higher dietary lipid content, peaking at the 

highest lipid level (120 g/kg). The fish groups fed with the D6 and D3 diets showed the highest albumin and lowest globulin levels, 

suggesting possible liver cell damage due to increased lipid intake. These results are consistent with previous studies on Carassius 

carassius (Wang et al., 2014; Paul et al., 2022). Serum protein profiles can indicate fish health, metabolism, and nutritional status 

(Maiti et al., 2023). The present study shows higher total serum protein levels in fish fed diets with increased lipid content, likely due 

to lipoproteins transporting the excess dietary lipids. Similar results were observed in O. niloticus (Lim et al., 2009). Triglycerides 

(TG) and total cholesterol (T-CHO) are key constituents of blood lipids and are primarily produced in the liver. Elevated blood lipid 

levels in the body can lead to various conditions, including hypertriglyceridemia (Tenenbaum et al., 2017). In the present study, it 

has been observed that serum TG and T-CHO levels significantly rise with fish fed at 120 g/kg of dietary lipid, suggesting high-lipid 

diets may elevate serum lipids and potentially cause various diseases. Similar findings have also been reported for Acipenser baerii 

(Ren et al., 2021) and Acipenser baerii × Acipenser gueldenstaedtii (Guo et al., 2011). Aspartate transaminase (AST) and alanine 

transaminase (ALT) are key enzymes involved in amino acid metabolism, primarily localized in liver cells but also present in the 

serum. Variations in their serum activity serve as crucial biomarkers for assessing liver function, with elevated levels typically 

signifying hepatocellular damage, degeneration, and necrosis (Yu et al., 2018). Fish fed D1 and D6 diets showed higher lipid levels 

compared to the D3 diet, indicating that both insufficient and excessive lipid intake may impair liver function. These findings align 

with previous studies reported in Brachymystax lenok (Yu et al., 2018) and Trachinotus ovatus (Xun et al., 2021). 

The overall body composition of fish serves as a key indicator of fish quality and nutritional value of feed, nutrient 

assimilation efficiency, flesh quality, and overall health status (Njinkoue et al., 2016). Fish fed a diet containing 60.0 g/kg (D3) lipid 

exhibited the highest protein content among all the groups. The highest values observed at this level may be attributed to improved 

efficiency in retaining protein content within the body. In contrast, body protein levels were low in the groups fed with both lower 

and higher lipid levels. A decrease in protein content with the inclusion of high dietary lipid levels has been observed in various fish 

species, Scortum barchoo (Song et al., 2009), Solea senegalensis (Borges et al., 2009), and L. rohita (Siddiqua and Khan, 2022). 

Existing literature indicates that elevated dietary lipid levels are also associated with increased lipid deposition throughout the fish's 

body while potentially reducing their moisture content (Shearer, 1994; Rasmussen et al., 2000; Xun et al., 2021). During the present  
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study, an increase in fat content and a reduction in moisture content were observed in scale carp fingerlings with respect to each 

incremental increase of lipid in the diet. This variation is likely due to the accumulation of fat within the fish's body. Similar 

observations regarding the lipid and moisture content relationship have been documented in other fish species, such as Clarias 

batrachus (Giri et al., 2000), C. idella (Du et al., 2005), and Oreochromis niloticus (Lim et al., 2009). The current study also shows 

that varying dietary lipid levels had no significant effect on the body ash content of scale carp fingerlings, and these results are in 

agreement with previous research findings on Nibea cobor (Huang et al., 2016) and L. rohita (Siddiqua and Khan, 2022). 

Digestive enzyme activity and nutrient utilization are among the key factors involved in enhancing feeding and supporting fish 

growth. The enzyme profile and activity in a fish's digestive tract can be influenced by the type, source, and quantity of nutrients 

(Debnath et al., 2007; Mohantay et al., 2008). Besides, intestinal digestion and absorption play a crucial role in feed efficiency and 

fish growth. However, there is a direct relationship between fish growth and digestive enzyme activity (Hidalgo et al., 1999). Our 

findings indicate that protease and lipase activities significantly increased with dietary lipid levels up to 60 g/kg. However, higher 

lipid inclusion at 120 g/kg led to reduced growth and inefficient feed utilization in fish. Previous studies have shown that higher 

dietary lipid levels suppress the activity of protease and lipase enzymes in fish, including Epinephelus coioides (Li et al., 2016), 

Brachymystax lenok (Chang et al., 2018), and Scophthalmus maximus (Zhang et al., 2022). However, no significant differences in 

amylase activity were observed among fish groups fed diets with varying lipid levels. These findings are consistent with earlier 

research on L. rohita (Gangadhara et al., 1997), P. gonionotus (Mohanty et al., 2008), and Acipenser baerii (Ren et al., 2021). 

Understanding the molecular processes and pathways involved in PUFA biosynthesis in economically significant freshwater 

carp species could facilitate enhanced consumption of plant-based lipid sources while maintaining optimal growth and PUFA 

accumulation in their fillets. LC-PUFAs are synthesized from shorter-chain PUFAs precursors through enzymatic processes 

facilitated by Fads and Elovl enzymes (Castro et al., 2016). In the current study an attempt has been made to evaluate the mRNA 

expression levels of essential genes involved in LC-PUFA biosynthesis, including FADS2 and ELOVL5 genes in scale carp 

fingerlings. The upregulation of all these genes was observed in fish that were fed diets supplemented with different levels of lipids, 

in comparison to the initial. The highest level of mRNA expression of FADS2 and ELOVL5 genes was observed in the fish group 

fed with 60.0 g/kg and 80.0 g/kg lipid diets. This could be attributed to the presence of LA and ALA acid in the experimental diets. 

Previous studies have indicated that higher levels of LA and ALA in the diet lead to the upregulation of desaturases and elongases 

(Turchini et al., 2006; Li et al., 2008). However, an excess of ALA in the diet may suppress the transcription of the FADS2 gene 

(Bell et al., 1993). The biosynthesis of LC-PUFAs was suppressed as dietary lipid levels increased beyond 80 g/kg, indicated by the 

reduced expression of desaturase and elongase genes. This down-regulation might result from elevated LC-PUFAs concentrations in 

groups fed with higher lipid levels. The present findings are in agreement with the findings of the other workers on freshwater fish 

species (Izquierdo et al., 2008; Ren et al., 2012; Xu et al., 2014; Nayak et al., 2018; Mir et al., 2020). 

    5. Conclusion 
This study found that providing optimum lipid supplementation greatly increased growth performance in common carp, C. carpio var. 

communis fingerlings. Quadratic regression analysis revealed that the ideal amount of lipid for maximal growth was 68.0 g/kg of linseed 

oil in presence of 20.0 g/kg of cod liver oil, while both lower and excess lipid had a negative impact on growth. Lipid levels significantly 

altered hemato-biochemical parameters, serum metabolites, intestinal digestive enzyme activities, and expression of FADS2 and 

ELOVL5 genes. These findings will encourage the development of nutritionally balanced feed for intensive production of common carp, 

C. carpio var. communis.  
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