

Effect of dietary lipid levels on growth, intestinal enzyme activity, and expression of genes involved in long chain polyunsaturated fatty acid synthesis in scale carp, *Cyprinus carpio* var. *communis* fingerlings

Aamir Majeed¹, Imtiaz Ahmed^{1*}, Nazir A. Dar²

¹*Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Srinagar 190006, India*

²*Department of Biochemistry, University of Kashmir, Srinagar 190006, India*

*Corresponding Author: Imtiaz Ahmed (imtiazamul@yahoo.com)

Abstract

Lipids play a significant role in growth and various metabolic activities in fish, inclusion of appropriate level of lipid is therefore essential in aquaculture. A 70-day feeding trial was conducted to evaluate the effect of dietary lipids levels on growth performance, hemato-biochemical parameters, serum parameters, intestinal enzyme activity, and expression of genes involved in long chain polyunsaturated fatty acids in scale carp fingerlings. *Cyprinus carpio* var. *communis* fingerlings (1.57 ± 0.02 g/fish) were fed isonitrogenous diets (428 g/kg crude protein) containing varying lipid levels (20, 40, 60, 80, 100 and 120 g/kg). Fish were fed twice daily to triplicate group of 20 fish per tank at 09:00 and 16:00 hours at the rate of 4% body weight/day. The results show that growth parameters including live weight gain (LWG%), protein efficiency ratio (PER), specific growth rate (SGR%), feed conversion ratio (FCR) and proximate composition vary significantly ($P < 0.05$) with different dietary lipid levels. While, no significant ($P > 0.05$) differences in body ash content were observed among the treatments. Hematological and serum parameters also showed significant variation among the treatment. Higher enzymatic activity, with the exception of amylase, was observed at 60.0 g/kg lipid diet. Fatty acid desaturase 2 (FADS2) and elongase of very long chain fatty acids (ELOVL5) mRNA showed higher relative expression at 60.0 and 80.0 g/kg lipid fed diets, respectively. Based on the findings of quadratic regression analysis the optimal dietary requirement of linseed oil as a lipid source for maximum growth in scale carp fingerlings was established at 68.0 g/kg in presence of 20.0 g/kg of cod liver oil of dry diet.

Keywords: Scale carp, Lipid level, hemato-biochemical parameters, growth performance.

Citation: Aamir Majeed, Imtiaz Ahmed, Nazir A. Dar. 2025. Effect of dietary lipid levels on growth, intestinal enzyme activity, and expression of genes involved in long chain polyunsaturated fatty acid synthesis in scale carp, *Cyprinus carpio* var. *communis* fingerlings. FishTaxa 36(1s): 365-380

1. Introduction

Fishes have higher dietary protein requirement than mammals and birds because fish primarily depend on protein to fulfill their energy requirement (Li et al., 2020; Li et al., 2021). However, excessive protein content in diet drives up feeding expenses and also results in sub-optimal growth performance and higher nitrogen excretion (Talukdar et al., 2020; Pang et al., 2024). Therefore, to optimize the protein utilization, diets have been designed with increased amounts of energy sources other than proteins, such as lipids and carbohydrates, that reduce the reliance on dietary protein. Apart from energy, lipids also provide vital functional components such as fatty acids, phospholipids, and cholesterol, which play a crucial role in fish growth, development, and overall well-being (Leaver et al., 2008; Sun et al., 2013). It is widely recognised that incorporating lipids into fish diets helps minimize protein usage, improve growth rates, and make aquaculture more cost-effective while reducing its environmental footprint (Wang et al., 2005; Xie et al., 2021).

The inclusion of appropriate lipid levels in the diets of fish is both quantitatively and qualitatively significant, due to its fundamental involvement in biological functions. These include acting as the main source of energy for metabolism as well as supplying vital fatty acids required for physiological processes, assisting in the absorption and distribution of fat-soluble vitamins, and preserving the structural integrity and fluidity of cell membranes, all of which are essential for the best possible development, reproduction, and growth (Wang et al., 2021; Sargent et al., 2002). However, insufficient lipid levels in fish diets often result in suboptimal growth performance (Perez-Velazquez et al., 2016). Conversely, overabundance of dietary lipids in the diet negatively affects fish health while also diminishing growth and feed efficiency (Peng et al., 2017; Wang et al., 2021). Moreover, diets with elevated lipid levels are more prone to oxidation, which can affect their quality over time (Pang et al., 2024). Optimum dietary lipid levels for various fish species are influenced by multiple factors, such as life stage, species-specific requirements, environmental conditions, and overall nutritional balance. Hence, determining the appropriate lipid levels of culturable fish species is crucial for nutritional efficiency, environmental sustainability, and economic viability (Chupal et al., 2021).

In general, humans primarily rely on marine organisms for the supply of n-3 LC-PUFAs (Pereira et al., 2003; Marrero et al., 2022). Due to this, a significant number of species are now experiencing overexploitation, which has resulted in a scarcity of these

natural lipid sources. Aquaculture has been suggested as the most promising option for satisfying the rising need for fish and other seafood on a worldwide scale (FAO, 2020). Ironically, finfish aquaculture feed production is vastly reliant on fish meal and fish oil (FAO, 2020), creating an unsustainable approach that confines its growth. Therefore, it's essential to look for an alternative to fish oil, especially the vegetable oils, as they are more cost-effective and easier to obtain. Consequently, vegetable oils (VOs) lack LC-PUFAs, which can negatively impact fish health and diminish their nutritional value for human consumption (Perez et al., 2014; Marrero et al., 2022). So, amidst this backdrop, an escalating interest has emerged in unraveling the capacities and mechanisms governing the steps in the production of LC-PUFAs in cultured fish species.

Freshwater fishes exhibit a notable capability to convert C18 PUFAs into C20-22 PUFAs, including arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) (Ren et al. 2012). The biosynthetic pathways of LC-PUFAs involve the synergistic action of elongases (ELOVL) and fatty acyl desaturases (FADS), such as FADS2 and ELOVL5 (Castro et al., 2016; Xie et al., 2021). FADS2 is a membrane-bound protein located in the endoplasmic reticulum, serving as the initial enzyme in the production of LC-PUFAs containing 20 or more carbon atoms. FADS operate by introducing a double bond between an existing double bond and the carboxylic group. While elongases serve as rate-limiting enzymes crucial for elongating fatty acids in the pathway (Castro et al. 2016). ELOVL5 exhibits preference for elongating C18 and C20 substrates, while ELOVL2 exhibits preference for C20 and C22 PUFA as substrates (Monroig et al., 2009). However, the ability of elongation and desaturation varies among different fish species (Monroig et al., 2011), which warrants that the exact mechanism of these genes with respect to species is imperative.

C. carpio var. *communis* is an omnivorous fish commonly known as scale carp. The common carp is a highly viable large-sized candidate species for freshwater aquaculture, offering significant potential for commercial production as well. It is a member of the largest freshwater family, Cyprinidae, renowned for its high nutritional value, delightful taste, easy digestibility, affordability, and widespread availability. Owing to its rapid growth and ease of cultivation, the fish is identified as one of the most extensively cultivated species in freshwater aquaculture worldwide (Guler et al., 2008; Yousefi et al., 2020; Hassan et al., 2022).

The objective of the present study was to establish the dietary lipid requirement and to explore the impacts of various dietary lipid levels on growth, fatty acid composition, hematology, proximate composition, serum profile and relative mRNA expression of genes involved in LC-PUFAs biosynthesis.

Materials and Methods

2.1 Formulation and Preparation of experimental diets

Six isonitrogenous diets (428 g/kg crude protein) with varying lipid levels, containing graded levels of gross energy varied from 16.48-20.25 KJ/g, dry diets were designed. The diets were formulated with casein and gelatin as source of protein, cod liver oil and linseed oil were used as lipid source. The level of linseed oil was varied at 20, 40, 60, 80, 100 and 120 g/kg, whereas cod liver oil was fixed at 20 g/kg in all the experimental diets, the diets were labelled as D1, D2, D3, D4, D5 and D6 (Table 1). Gelatin was dissolved in water through the process of heating and stirring in a bowl. Subsequently, casein and other ingredients were thoroughly mixed using a Hobart Corporation mixer. Once the mixture reached at 40 °C, vitamins premixes and oils were added to it with constant stirring. Lastly, carboxymethyl cellulose (CMC) was added and thoroughly mixed in order to obtain dough, later on the diet was processed using a pelletizer which was equipped with a 2mm die for the production of suitable sized pellets. However, the moisture content was reduced below 100 g/kg through the desiccation in hot air oven at 40 °C. The dried pellets were ground up, sieved and kept in storage at 4 °C until use.

Table 1. Composition of experimental diets used for estimating the lipid requirement of common carp, *Cyprinus carpio* var. *communis* fingerlings.

Ingredients (g kg ⁻¹ , dry diet)	Experiments diets					
	20.0 (D ₁)	40.0 (D ₂)	60.0 (D ₃)	80.0 (D ₄)	100.0 (D ₅)	120.0 (D ₆)
Casein ¹	414.60	414.60	414.60	414.60	414.60	414.60
Gelatin ²	103.60	103.60	103.60	103.60	103.60	103.60
Dextrin	220.0	220.0	220.0	220.0	220.0	220.0
Cod liver oil ³	20.0	20.0	20.0	20.0	20.0	20.0
Linseed oil ⁴	20.0	40.0	60.0	80.0	100.0	120.0
Mineral mix ⁵	40.0	40.0	40.0	40.0	40.0	40.0
Vitamin mix ⁶	30.0	30.0	30.0	30.0	30.0	30.0
Carboxymethyl cellulose	40.0	40.0	40.0	40.0	40.0	40.0

Alpha cellulose	111.80	91.80	71.80	51.80	31.80	11.80
Total	1000	1000	1000	1000	1000	1000
Calculated crude protein (g kg ⁻¹)	428.0	428.0	428.0	428.0	428.0	428.0
Gross energy ⁷ (kJ g ⁻¹ , dry diet)	16.48	17.23	17.99	18.74	19.49	20.25
Proximate composition of experimental diet (g kg ⁻¹)						
Dry matter	912.32	913.65	914.62	916.65	917.82	918.80
Lipid content	428.4	428.9	427.7	428.8	428.2	427.6
Analyzed crude protein	41.63	61.62	80.84	101.62	121.22	139.68
Estimated Gross energy (kJ g ⁻¹ , dry diet)	16.65	17.41	18.08	18.81	19.61	20.33

¹Crude protein (80%), ²Crude protein (93%), Loba Chemie, India; ³Sea cod pure cod liver oil, Universal Nutri science Private Limited, Mumbai, India. ⁴India unrefined Linseed oil, Nashiel, Chemical Private Limited, Ahmedabad, India. ⁵Halver 2002 mineral (AlCl₃. 6H₂O, 150; ZnSO₄. 7H₂O, 3000; CuCl, 100; MnSO₄.4-6H₂O, 800; KI, 150; CoCl₂.6H₂O, 1000 mg kg⁻¹; plus USP # 2 Ca (H₂PO₄)₂. H₂O, 135.8; C₆H₁₀CaO₆ 327.0; C₆H₅O₇Fe.5H₂O, 29.8; MgSO₄.7H₂O, 132.0; KH₂PO₄ (dibasic), 239.8; NaH₂PO₄.2H₂O, 87.2; NaCl, 43.5 (g kg⁻¹); ⁶vitamin mix (choline chloride 5000: thiamin HCL 50; riboflavin 200; pyridoxine HCL 50; nicotinic acid 750; calcium pentothenate 500; inositol 2000; biotin 5.0; folic acid 15; ascorbic acid 1000; menadione 40; alpha-tocopherol acetate 400; cyanocobalamin 0.1 (g kg⁻¹); ⁶Calculated on the basis of physiological fuel values 4.5, 3.5 and 8.5 kcal g⁻¹ for protein, carbohydrate and fat, respectively (Jauncey, 1982). ⁷Estimated on Bomb calorimeter (Model 6400; Parr, Moline, Illinois, USA).

2.2 Feeding trial

C. carpio var. *communis* fingerlings were obtained from the Govt. Fish Seed Farm, district Manasbal for the purpose of this experiment. Which were transported in oxygen filled polythene bags to experimental station at University of Kashmir. Subsequently, the fish were prophylactically treated with a 1:3000 solution of KMnO₄, so as to remove any infection and stocked in circular plastic fish tank having water capacity of 600 L. Before starting the feeding trial, the fish were acclimated in laboratory conditions by feeding H₄₄₀ diet (Halver, 2002) for a duration of fortnight. Later on, desired number of acclimated fingerlings, 1.59 ± 0.02 g (ABW± SD), were randomly distributed in 18 circular troughs with 70 L water holding capacity, supplied with continuous water flow. 20 fish were housed in tank for each treatment level 3 replicates were made. The rate of water flow for each tank was consistently kept at a range of 1.0-1.5 liters per minute. The diets were fed at the rate of 4% body weight/day into two equal amounts and fed at 09:00 and 17:00, hours daily. Fish were starved on the days designated for recording weekly weights. A digital top-loading balance was used to measure the initial and weekly weights (Sartorius CPA-224S, Goettingen, Germany). The fish excreta were removed through siphoning every morning before the daily feeding. Additionally, any unconsumed feed, if detected, was gathered, oven dried, and re-weighed to estimate the exact amount of feed consumed by the fish during the entire period feeding trial.

2.3 Proximate analysis

On the initiation of the feeding trial, 40 fish from the acclimatized lot were sacrificed for determination of somatic indices and initial proximate analysis. Similarly, after the completion of the experiment, the final weight from each replicate was recorded on the last day. Subsequently, 12 fish were chosen for analysing the final proximate composition from each dietary treatment. The proximate composition of experimental diets, as well as the initial and final body constituents was analysed by using standardized methods (AOAC, 1995). All experimental samples were subjected to oven drying at a temperature of 105 ± 1°C for a duration of 24 hours to ascertain the percentage of dry matter. Subsequently, the crude protein content in each sample was measured using Kjeldahl principal with the help of Kjeltec, 8400 (FOSS, Denmark). For estimating crude lipid, the solvent extraction method was employed with petroleum ether 40-60 °C B.P and the extraction was carried out with the help of soxtec automatic analyzer, Awanti 2050 (FOSS Denmark). The content of ash of both feed and fish samples was determined after incinerated the samples in muffle furnace at 650 °C for 4-6 hours.

2.4 Water quality analysis parameters

During the entire feeding trial physico-chemical parameters such as, pH, dissolved oxygen (DO), temperature, free carbon dioxide (CO₂), and total alkalinity, adhering to standard methods (APHA, 1992). Before the daily feeding, water samples were taken for examination of above parameters. Using a mercury thermometer, the water's temperature was found to be between 24.3-25.9 °C. Winkler's iodimetric method was used to analyse, DO content which determined to be between 6.5 and 7.4 mg/L. Similarly, titrimetric

techniques were used to measure total alkalinity and free carbon dioxide, which showed values between 87 to 124 mg/L and 4.4 to 6.8 mg/L, respectively. With the application of a digital pH metre (pH ep-HI 98107, USA), the pH was tested and was found to be in between 7.2 to 7.5.

2.5 Blood collection and analysis

Five fish from each dietary treatment ($n = 5 \times 3$) were selected randomly for the assessment of the hematological parameters. For collection of blood caudal peduncle was severed, and the samples were taken for estimation using heparinized (Na-heparinized) and non-heparinized capillary tubes. All hematological analyses were conducted within a 2-hours after each extraction. Hemoglobin content (Hb), red blood cell (RBC), white blood cell (WBC) counts, and hematocrit (Hct%) content were to be determined from blood taken in heparinized tubes. The length and weight of each fish were recorded prior to blood collection to assess the condition factor (K). However, the liver was dissected from the same fish for estimation of the hepatosomatic index (HSI) specimen which were sacrificed for blood collection.

2.6 Analysis of serum parameters

Blood collected in tubes without heparin underwent rapid centrifugation in a microcentrifuge (REMI-12C) at $4100 \times g$ at 4°C for ten minutes to extract serum. After serum separation, reagent rotors were loaded with serum samples using a $100 \mu\text{L}$ pipette to test for different parameters. Every dosage was subjected to triplicate tests to assess variables including, albumin, globulin, cholesterol, triglycerides and total protein as well as ALT and AST. Assessment of the serum analytes was carried out using an automated vet scan biochemistry analyzer VS2 (Abaxis, USA).

2.7 Intestinal enzymatic activities

The intestine samples ($n = 3 \times 3$) were gathered and homogenized within a saline solution at a proportion of 10 volumes. After, that the homogenate underwent centrifugation for a duration of 20 minutes at 4°C at $6000 \times g$ in order to collect the supernatant, which was then frozen at -20°C for further examination. The protease activity was measured using the procedure outlined by Moore and Stein (1948) employing bovine serum albumin as the substrate, while the technique outlined by Furne et al. (2005) was utilized to assay the activities of lipase and amylase.

2.8 RNA isolation and Quantitative (q) PCR

TRIzol method was used to extract the RNA from fish muscles. Briefly, equal weight of fish tissues (100 mg) was homogenized in 1 ml of TRIzol reagent (Invitrogen) was added and allowed to stand at room temperature for 5 minutes. Following this, 200 μl of chloroform was incorporated into the mixture, which was then allowed to incubate for 2 minutes before being subjected to centrifugation at 14,000 rpm for 15 minutes. The liquid phase was moved to a fresh, sterilized tube. Subsequently, 0.5ml of pure isopropanol were introduced, and the mixture underwent incubation for a duration of 10 minutes and underwent for centrifugation at 14,000 rpm for another 10 minutes. Carefully supernatant was discarded, pellet was washed with 75% ethanol (0.5ml) and centrifuged at 7000 rpm for 5 minutes. Then pellet was air dried for 10 minutes followed by dissolving the pellet in nuclease free water. The equal amount of RNA from all samples was then reverse transcribed into complementary DNA using the Thermo Fischer Scientific RevertAidTM first strand cDNA synthesis kit. qPCR was carried out according to the manufacturer's instructions using PowerUpTM SYBRTM Green master mix (Thermo Fischer Scientific) and the CFX 96 Real-Time System (Bio-Rad). The oligonucleotide sequences used for amplification in qPCR are provided in Table 2.

Table 2. Primers used for the real time PCR analysis.

Gene	Forward Primer (5'-3')	Reverse primer (3'-5')	Amplicon size (bp)	Accession no.	Primer efficiency (%)
FADS 2	AGAAATCCGGAGAAATCT GGCT	ACTGGCGGTTAGTTGA TGTCT	122	AF309557	102.25
ELOV L5	GATTGACGACACTTCGTC CG	GAAAGTGTGGCTGCAGT GTG	121	KF924199	107.23
β - actin	GGACTCTGGTGATGGTGT CA	CTGTAGCCTCTCTCGGT CAG	138	M24113.1	99.89

FADS2= Fatty acid desaturase, ELOVL5= Elongase of very long chain fatty acids 5

2.9 Statistical analysis.

The results were expressed as mean \pm SEM. One-way analysis of variance (ANOVA) (Snedecor and Cochran, 1967; Sokal and Rohlf, 1981) followed by Duncan's multiple range test, was used to evaluate significant difference among the treatments. A significance threshold of $P < 0.05$ was used. The data analysis was performed by using SPSS Statistics Version 22.0 (SPSS Inc., Chicago, IL, USA). Additionally, the optimal dietary lipid level required for common carp fingerlings was determined using a second-degree polynomial regression analysis (Zeitoun et al. 1976).

3. Results

3.1 Growth performance

The growth performance and feed utilization data of fingerlings of scale carp fed various levels of lipid-based testing diets for 70 days are presented in table 3. The survival of fish during the entire growth trial was recorded 100 percent. The highest values of growth attributes, like live weight gain (LWG%), protein efficiency ratio (PER), specific growth rate (SGR%) and lowest feed conversion ratio (FCR) was observed in the group that supplied a diet containing 60.0 g/kg of lipid. While as, a notable decline in growth performance ($P < 0.05$) data occurred, when the lipid content was increased from 80.0 g/kg to 120.0 g/kg, respectively. LWG and FCR data were employed in quadratic regression analysis to determine the optimal lipid requirement for the maximum growth of scale carp fingerlings. The results of the present study indicate that the optimal inclusion level of linseed oil as a dietary lipid source for maximum growth of *C. carpio* var. *communis* fingerlings was approximately 68.0 g/kg, in the presence of 20.0 g/kg cod liver oil in the diet.

Table 3. Growth, FCR, PER, protein deposition ratio and percentage survival of common carp, *C. carpio* var. *communis* fingerlings fed diets containing varying levels of dietary lipid levels for 10-weeks*.

	Varying lipid levels (g kg ⁻¹ , dry diet) in the experimental diets					
	20.0 (D ₁)	40.0 (D ₂)	60.0 (D ₃)	80.0 (D ₄)	100.0 (D ₅)	120.0 (D ₆)
Average initial weight (g)	1.55 \pm 0.01	1.58 \pm 0.01	1.59 \pm 0.01	1.55 \pm 0.01	1.57 \pm 0.01	1.60 \pm 0.013
Average final weight (g)	4.90 \pm 0.02 ^c	6.23 \pm 0.07 ^c	7.60 \pm 0.06 ^a	7.10 \pm 0.05 ^b	6.28 \pm 0.04 ^c	5.57 \pm 0.03 ^d
Live weight gain (%) ¹	216.12 \pm 3.29 ^c	294.30 \pm 3.77 ^c	377.98 \pm 4.37 ^a	358.06 \pm 3.8 ^b	300.00 \pm 3.56 ^c	266.24 \pm 3.24 ^d
Specific growth rate (%) ²	1.64 \pm 0.01 ^c	1.96 \pm 0.01 ^c	2.23 \pm 0.01 ^a	2.17 \pm 0.01 ^b	1.97 \pm 0.01 ^c	1.78 \pm 0.01 ^d
Feed conversion ratio (FCR) ³	2.46 \pm 0.02 ^a	1.75 \pm 0.03 ^c	1.35 \pm 0.02 ^d	1.56 \pm 0.03 ^c	1.87 \pm 0.02 ^b	2.04 \pm 0.03 ^a
Protein efficiency ratio (PER) ⁴	0.94 \pm 0.01 ^d	1.33 \pm 0.03 ^b	1.71 \pm 0.04 ^a	1.49 \pm 0.03 ^{ab}	1.24 \pm 0.02 ^c	1.14 \pm 0.01 ^d
Body protein deposition (BPD%) ⁵	14.44 \pm 0.35 ^{cd}	18.83 \pm 0.37 ^b	29.94 \pm 0.52 ^a	24.41 \pm 0.23 ^b	19.94 \pm 0.56 ^c	17.59 \pm 0.47 ^d
Survival (%)	100	100	100	100	100	100

*Mean value of 3 replicates \pm SEM; Mean values sharing the same superscript are not significantly different ($P > 0.05$).

¹Live weight gain (%), Final body weight–initial body weight/initial weight \times 100

²Specific growth rate (SGR %) = 100 \times (In final wet weight (g)–In initial wet weight g)/duration (days)

³Feed conversion ratio (FCR) = Dry weight of feed consumed / Wet weight gain

⁴Protein efficiency ratio (PER) = Wet weight gain (g) / Protein consumed (g, dry weight basis)

⁵Body protein deposition (BPD %) = 100 \times (BWf \times BCPf) – (BWi \times BCPI) / [TF \times CP]

Where BWi and BWf=mean initial and final body weight (g), BCPI and BCFF = mean initial and final percentage of muscle protein TF=Total amount of diet consumed and CP=Percentage of crude protein of the diet.

3.2 Whole body composition

The data on whole-body composition of the experimental fish, obtained at the conclusion of the 10-week feeding trial, also showed significant ($P < 0.05$) differences with respect of the inclusion of various lipid levels (Table 4). There was an upward trend observed in whole body crude protein content of each group with the increase of lipid in the diet up to 60.0 g/kg, however, beyond this level the protein content of fish significantly decreased, while, body fat content exhibited significant ($P < 0.05$) increasing pattern with each incremental level and reaching its highest peak up to the group that fed a diet containing 120.0 g/kg lipid, which was the highest lipid inclusion level in the present study. There was no notable difference ($P > 0.05$) observed in whole-body ash content across the incremental levels. The highest value of condition factor (K) was seen in fish group fed a diet containing 60.0 g/kg lipid and reduced thereafter. The hepatosomatic index (HSI) progressively increased with the addition of each lipid levels and the highest value of HSI was noticed in the group of fish that were fed with 120.0 g/kg lipid in the diet.

Table 4. Carcass composition, condition factor, hepatosomatic index of common carp, *C. carpio* var. *communis* fingerlings fed diets containing varying levels of dietary lipid levels for 10-weeks*.

	Varying lipid levels (g kg ⁻¹ , dry diet) in the experimental diets						
	Initial	20.0 (D ₁)	40.0 (D ₂)	60.0 (D ₃)	80.0 (D ₄)	100.0 (D ₅)	120.0 (D ₆)
Moisture (%)	77.32 ± 0.31	76.88 ± 0.25 ^a	75.71 ± 0.37 ^b	74.10 ± 0.31 ^c	73.47 ± 0.15 ^d	72.67 ± 0.19 ^d	72.22 ± 0.16 ^d
Protein (%)	13.90 ± 0.13	12.85 ± 0.13 ^f	14.33 ± 0.9 ^c	16.89 ± 0.6 ^a	16.05 ± 0.7 ^b	15.69 ± 0.6 ^c	15.22 ± 0.9 ^d
Fat (%)	3.67 ± 0.7	4.35 ± 0.9 ^e	4.88 ± 0.7 ^d	5.29 ± 0.5 ^c	5.42 ± 0.6 ^c	5.89 ± 0.7 ^b	6.12 ± 0.8 ^a
Ash (%)	2.45 ± 0.3	2.66 ± 0.4 ^a	2.78 ± 0.4 ^a	2.88 ± 0.4 ^a	2.24 ± 0.3 ^a	2.30 ± 0.2 ^a	2.25 ± 0.3 ^a
Condition factor (K) ¹	1.45 ± 0.04	1.29 ± 0.03 ^c	1.41 ± 0.04 ^d	1.79 ± 0.03 ^a	1.68 ± 0.04 ^b	1.67 ± 0.03 ^b	1.56 ± 0.04 ^c
Hepatosomatic index (HSI) ²	1.79 ± 0.06	1.70 ± 0.04 ^c	1.75 ± 0.06 ^c	1.95 ± 0.06 ^b	2.06 ± 0.04 ^c	2.12 ± 0.07 ^b	2.65 ± 0.07 ^a

*Mean value of 3 replicates ± SEM; Mean values sharing the same superscript are not significantly different ($P > 0.05$)

¹Condition factor = body weight (g)/body length (cm³) × 100. ²Hepatosomic index (%) = liver weight (g)/body weight (g) × 100.

3.3 Hematological parameters and intestinal enzyme activities

In the present study, hematological parameters and intestinal enzyme activity revealed significant ($P < 0.05$) differences with respect to each incremental level of lipid in the testing diets (Table 5). The highest hemoglobin (Hb) content 8.41 g/dl was observed in fish fed a diet containing 60.0 g/kg of lipid, while the lowest Hb content was noted with fish group fed 20.0 g/kg (D₁) and 120.0 g/kg (D₆) lipid diets. Hematocrit (Hct) values improved with each increasing lipid levels up to 60.0 g/kg and thereafter a significant decline in Hct content was observed. The highest red blood cell (RBC) count of 2.98×10^6 mm⁻³ was also noted in fish fed a diet containing 60.0 g/kg of dietary lipid, whereas, the lowest value was achieved with fish fed a diet having 120.0 g/kg of lipid. Likewise, fish subjected to varying levels of lipid exhibited notable differences ($P < 0.05$) in their leukocyte (WBC) count. A significantly higher WBC count 2.58×10^4 mm⁻³ was observed in fish fed the diet containing 120.0 g/kg lipid content. The activities of intestinal digestive enzymes of scale carp fingerlings also showed notable alteration with fish fed varying lipid levels. Significantly ($P < 0.05$) maximum activity of protease was observed in fish fed with 60.0 g/kg of lipid. Lipase also shows a similar trend, Nonetheless, no significant ($P > 0.05$) difference in amylase activity was noted with the increasing lipid contents in the diet.

Table 5. Hematological indices and intestinal enzymatic activities of common carp, *C. carpio* var. *communis* fingerlings fed diets containing varying levels of dietary lipid for 10-weeks*.

	Initial	Varying levels of lipid levels (g kg ⁻¹ , dry diet) in the experimental diets					
		20.0 (D ₁)	40.0 (D ₂)	60.0 (D ₃)	80.0 (D ₄)	100.0 (D ₅)	120.0 (D ₆)
Hb (g dL ⁻¹) ¹	5.03 ± 0.08	6.31 ± 0.10 ^c	7.42 ± 0.23 ^b	8.41 ± 0.42 ^a	7.74 ± 0.07 ^{bc}	7.04 ± 0.08 ^{cd}	6.69 ± 0.07 ^e
Hct (%) ²	18.90 ± 0.29	22.92 ± 0.33 ^d	27.50 ± 0.31 ^c	33.86 ± 0.41 ^a	30.40 ± 0.51 ^b	26.75 ± 0.49 ^c	23.66 ± 0.37 ^d
RBC (x10 ⁶ /mm ³) ³	2.40 ± 0.03	2.66 ± 0.04 ^c	2.83 ± 0.02 ^b	2.98 ± 0.01 ^a	2.53 ± 0.03 ^d	2.49 ± 0.02 ^d	2.44 ± 0.02 ^d
WBC (x10 ⁴ /mm ³) ⁴	2.47 ± 0.02 ^a	2.42 ± 0.04 ^{ab}	2.30 ± 0.03 ^c	2.16 ± 0.03 ^d	2.26 ± 0.03 ^c	2.34 ± 0.02 ^b	2.58 ± 0.03 ^a
Protease activity (U mg/protein)	10.29 ± 0.09	12.40 ± 0.18 ^e	13.63 ± 0.14 ^d	16.56 ± 0.19 ^c	18.29 ± 0.13 ^a	17.65 ± 0.23 ^b	16.59 ± 0.19 ^c
Lipase activity (U mg/ protein)	0.34 ± 0.04	0.47 ± 0.04 ^c	1.18 ± 0.02 ^a	1.72 ± 0.02 ^a	1.55 ± 0.04 ^b	1.35 ± 0.04 ^c	1.19 ± 0.03 ^d
Amylase activity (U mg/ protein)	16.33 ± 0.55	16.66 ± 0.59 ^a	16.54 ± 0.58 ^a	16.49 ± 0.58 ^a	16.44 ± 0.60 ^a	16.42 ± 0.63 ^a	16.38 ± 0.60 ^a

*Mean value of 3 replicates ± SEM; Mean values sharing the same superscript are not significantly different ($P > 0.05$).

¹Hb, Hemoglobin, ²Hct, Hematocrit. ³RBC, Red blood cell. ⁴WBC, White blood cell

3.4 Serum indices

Fish fed various levels of lipid levels over the 10-week feeding trial displayed notable variation ($P < 0.05$) in serum parameters across each incremental level (Table 6). There was a significant increase in serum albumin, total protein, cholesterol and triglycerides levels with increasing lipid levels in the diets and reaching maximum with the fish fed 120.0 g/kg of lipid in the diet. In contrast alanine transaminase (ALT) and aspartate transaminase (AST) exhibited a decreasing pattern with the gradual increase in lipid in the diet until reaching 60.0 g/kg, afterwards an upward trend was observed.

Table 6. Effects of lipid levels on blood serum parameters of common carp, *C. carpio* var. *communis* fingerlings fed diets containing varying levels of dietary lipids for 10- weeks.*

	Varying levels of lipid levels (g kg ⁻¹ , dry diet) in the experimental diets					
	20.0 (D ₁)	40.0 (D ₂)	60.0 (D ₃)	80.0 (D ₄)	100.0 (D ₅)	120.0 (D ₆)
Albumin (g L ⁻¹)	11.13 ± 0.02 ^f	12.51 ± 0.03 ^e	13.71 ± 0.03 ^d	14.50 ± 0.06 ^c	15.44 ± 0.03 ^b	16.90 ± 0.02 ^a
Globulin (g L ⁻¹)	22.10 ± 0.04 ^a	21.50 ± 0.03 ^a	20.50 ± 0.03 ^c	21.52 ± 0.04 ^b	21.60 ± 0.03 ^b	22.55 ± 0.02 ^a
Total protein (g L ⁻¹)	33.23 ± 0.04 ^c	34.0 ± 0.06 ^d	34.21 ± 0.04 ^d	36.02 ± 0.09 ^c	37.04 ± 0.03 ^b	39.44 ± 0.01 ^a
Total cholesterol (mmol L ⁻¹)	3.01 ± 0.0 ^e	3.08 ± 0.02 ^{de}	3.18 ± 0.04 ^d	3.32 ± 0.4 ^c	3.47 ± 0.04 ^b	3.60 ± 0.2 ^a

Triglycerides (mmol L ⁻¹)	1.80 ± 0.03 ^c	1.86 ± 0.4 ^d	1.93 ± 0.2 ^d	2.04 ± 0.2 ^c	2.19 ± 0.3 ^b	2.35 ± 0.3 ^a
ALT (U L ⁻¹) ¹	22.93 ± 1.18 ^c	22.58 ± 1.10 ^a	14.88 ± 1.43 ^c	17.01 ± 1.01 ^c	18.78 ± 1.15 ^b	23.65 ± 1.14 ^a
AST (U L ⁻¹) ²	138.89 ± 2.64 ^b	134.65 ± 2.51 ^{bc}	125.11 ± 2.93 ^d	132.50 ± 2.12 ^c	135.76 ± 2.05 ^b	145.56 ± 3.77 ^a

*Mean value of 3 replicates ± SEM; Mean values sharing the same superscript are not significantly different ($P > 0.05$)

¹Alanine aminotransferases.

²Aspartate aminotransferase.

3.5 Relative expression of FADS2 and ELOVL5 genes

In the present study, the impact of lipid levels on the relative mRNA expression levels of FADS2 and ELOVL5 genes in common carp, *C. carpio* var. *communis* fingerlings were studied (Figures 1 and 2). The highest relative expression of FADS2 and ELOVL5 mRNA ($P < 0.05$) in muscle tissue was observed in groups that were fed a diet containing 60.0 and 80.0 g/kg lipid as compared to those groups that were fed diets with other lipid levels.

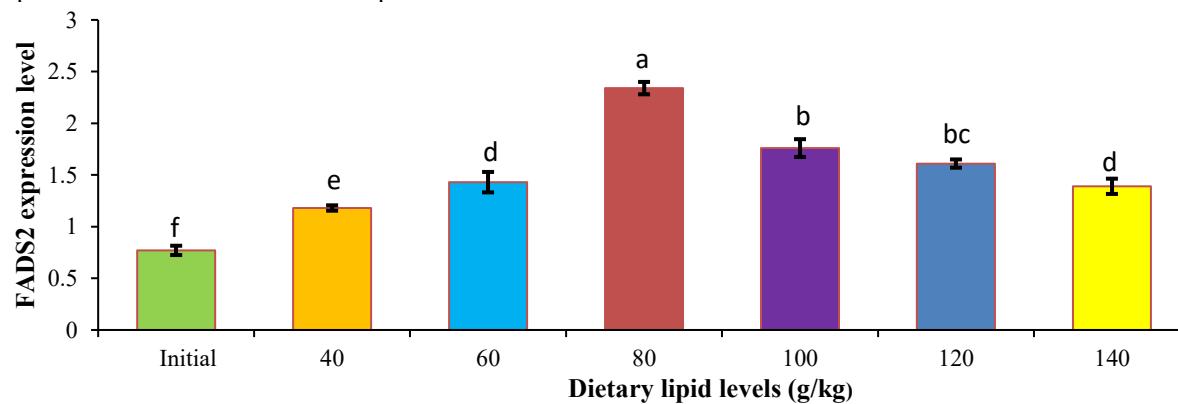


Fig.1 Relative expression levels of Fatty acid desaturase 2 (FADS2) in the muscle of *C. carpio* var. *communis* fingerlings fed diets containing varied lipid levels (g/kg) over a period of 10 weeks. Results are shown as the mean ± SEM.

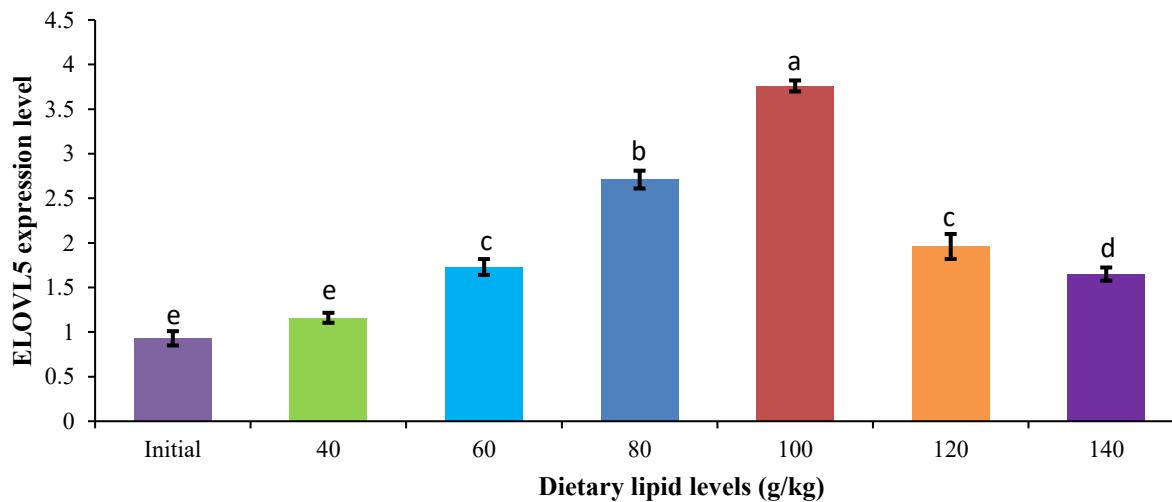


Fig.2 Relative expression levels of elongase of very long chain fatty acid 5 (ELOVL5) gene in the muscle of *C. carpio* var. *communis* fingerlings fed diets containing varied lipid levels (g/kg) over a period of 10 weeks. Results are shown as the mean ± SEM.

4. Discussion

Lipids serve as a vital energy source for both the growth and developmental processes of fish. They are efficiently metabolized by fish and are indispensable for ensuring normal growth and physiological development (Guo et al., 2019; Li et al., 2024). In the current study, various attributes, like LWG (%), PER, SGR, and BPD, increased when the scale carp fingerlings were supplied with lipid levels in the range of 20.0 – 60.0 g/kg, and afterwards, a decreasing trend in these parameters was obtained. It indicates that increasing lipid levels within an optimal range can supply adequate energy for fish activity. This allows proteins to be utilized primarily for anabolic processes, maximizing their contribution to the development and enhancing fish growth. Conversely, excessive lipid can disrupt the balance between energy and protein content in the feed, resulting in reduced growth rates and lower feed efficiency in fish. During the present study, scale carp fingerlings fed diets with lipid levels ranging from 80.0 to 120.0 g/kg were associated with a gradual decline in LWG, SGR, and BPD. The decrease in growth at high lipid-containing diets could result from the suppression of new fatty acid production and a diminished capacity of fish to digest and absorb lipids (Sargent et al., 1989; Luo et al., 2014; Han et al., 2014). Fish fed high lipid diets also exhibited an increase in FCR, accompanied by a reduction in both PER and SGR, respectively. The highest FCR value was recorded in fish fed with a diet possessing 120.0 g/kg (D6) of dietary lipid, which represents a higher value than the values observed in other treatment groups. Similarly, fish fed a diet containing 60.0 g/kg (D3) lipid displayed a significantly higher PER content than those fed other diets. These results indicate that higher lipid levels adversely affect nutrient utilization in fish, aligning with findings from earlier studies (Chatzifotis et al., 2010; Yong et al., 2015; Royuela et al., 2015; Bonvini et al., 2015). The HSI also increased progressively with rising lipid levels and showed the highest HSI was found in fish fed with a diet containing 120.0 g/kg (D6) lipid, indicating excessive lipid deposition in the liver. An increase in HSI with elevated lipid levels has also been reported in previous studies (Mohantay et al., 2008; Xu et al., 2011; Ren et al., 2012; Han et al., 2014). Additionally, fish fed a diet containing 60.0 g/kg (D3) of lipid demonstrated a higher condition factor, suggesting they were in optimal health, as an adequate lipid supply supported vital physiological functions.

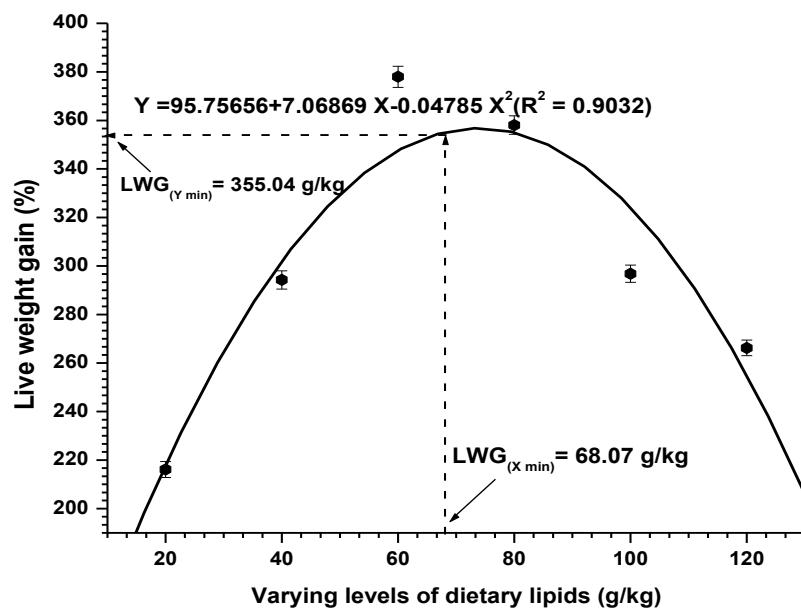


Fig. 3 Quadratic regression analysis of live weight gain (LWG%) against varying levels of dietary lipid levels in *C. carpio* var. *communis* fingerlings

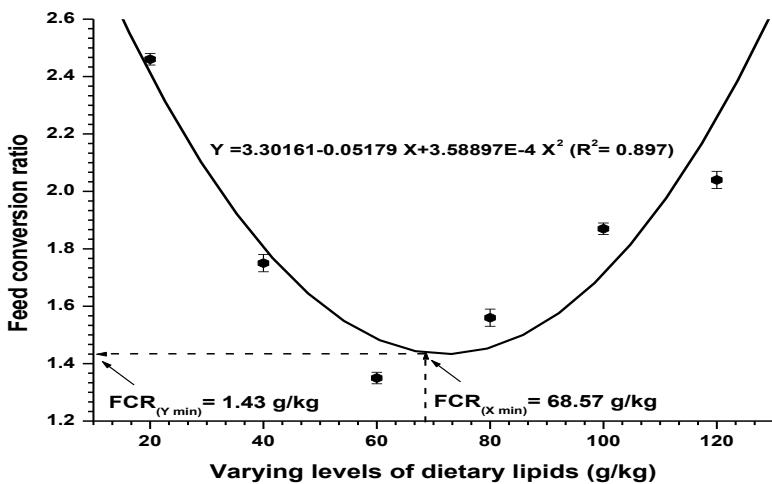


Fig. 4 Quadratic regression analysis of feed conversion ratio (FCR) against varying levels of dietary lipid levels in *C. carpio* var. *communis* fingerlings.

Evaluation of hematological parameters of fish is taken as the most effective approach in studying the physiological condition and health status of fish, irrespective of their presence in habitats (Kader et al., 2010; Ahmad et al., 2021). These metrics also provide important insights into fish physiology and act as markers of disease, stress, and environmental disruptions that arise in aquatic environments. In this study, significant ($P < 0.05$) variations in hematological parameters were observed in response to different levels of lipid inclusion in the diets. Hemoglobin (Hb), hematocrit (Hct%) content, and red blood cell (RBC) counts showed an increasing trend, peaking at 60.0 g/kg lipid inclusion level, thereafter a decreasing trend was observed. The higher Hb, Hct, and RBC values may be linked due to enhanced growth, which supports efficient oxygen transport in the blood. These findings align with earlier studies conducted on *Takifugu rubripes* (Kikuchi et al., 2009) and *Oreochromis niloticus* (Kasheif et al., 2011).

The concentrations of blood proteins, including globulin and albumin, offer valuable information about the overall health of fish (Varghese et al., 2020). Albumin levels in the serum significantly increased with higher dietary lipid content, peaking at the highest lipid level (120 g/kg). The fish groups fed with the D₆ and D₃ diets showed the highest albumin and lowest globulin levels, suggesting possible liver cell damage due to increased lipid intake. These results are consistent with previous studies on *Carassius carassius* (Wang et al., 2014; Paul et al., 2022). Serum protein profiles can indicate fish health, metabolism, and nutritional status (Maiti et al., 2023). The present study shows higher total serum protein levels in fish fed diets with increased lipid content, likely due to lipoproteins transporting the excess dietary lipids. Similar results were observed in *O. niloticus* (Lim et al., 2009). Triglycerides (TG) and total cholesterol (T-CHO) are key constituents of blood lipids and are primarily produced in the liver. Elevated blood lipid levels in the body can lead to various conditions, including hypertriglyceridemia (Tenenbaum et al., 2017). In the present study, it has been observed that serum TG and T-CHO levels significantly rise with fish fed at 120 g/kg of dietary lipid, suggesting high-lipid diets may elevate serum lipids and potentially cause various diseases. Similar findings have also been reported for *Acipenser baerii* (Ren et al., 2021) and *Acipenser baerii* × *Acipenser gueldenstaedtii* (Guo et al., 2011). Aspartate transaminase (AST) and alanine transaminase (ALT) are key enzymes involved in amino acid metabolism, primarily localized in liver cells but also present in the serum. Variations in their serum activity serve as crucial biomarkers for assessing liver function, with elevated levels typically signifying hepatocellular damage, degeneration, and necrosis (Yu et al., 2018). Fish fed D₁ and D₆ diets showed higher lipid levels compared to the D₃ diet, indicating that both insufficient and excessive lipid intake may impair liver function. These findings align with previous studies reported in *Brachymystax lenok* (Yu et al., 2018) and *Trachinotus ovatus* (Xun et al., 2021).

The overall body composition of fish serves as a key indicator of fish quality and nutritional value of feed, nutrient assimilation efficiency, flesh quality, and overall health status (Njinkoue et al., 2016). Fish fed a diet containing 60.0 g/kg (D₃) lipid exhibited the highest protein content among all the groups. The highest values observed at this level may be attributed to improved efficiency in retaining protein content within the body. In contrast, body protein levels were low in the groups fed with both lower and higher lipid levels. A decrease in protein content with the inclusion of high dietary lipid levels has been observed in various fish species, *Scortum barchoo* (Song et al., 2009), *Solea senegalensis* (Borges et al., 2009), and *L. rohita* (Siddiqua and Khan, 2022). Existing literature indicates that elevated dietary lipid levels are also associated with increased lipid deposition throughout the fish's body while potentially reducing their moisture content (Shearer, 1994; Rasmussen et al., 2000; Xun et al., 2021). During the present

study, an increase in fat content and a reduction in moisture content were observed in scale carp fingerlings with respect to each incremental increase of lipid in the diet. This variation is likely due to the accumulation of fat within the fish's body. Similar observations regarding the lipid and moisture content relationship have been documented in other fish species, such as *Clarias batrachus* (Giri et al., 2000), *C. idella* (Du et al., 2005), and *Oreochromis niloticus* (Lim et al., 2009). The current study also shows that varying dietary lipid levels had no significant effect on the body ash content of scale carp fingerlings, and these results are in agreement with previous research findings on *Nibea cobor* (Huang et al., 2016) and *L. rohita* (Siddiqua and Khan, 2022).

Digestive enzyme activity and nutrient utilization are among the key factors involved in enhancing feeding and supporting fish growth. The enzyme profile and activity in a fish's digestive tract can be influenced by the type, source, and quantity of nutrients (Debnath et al., 2007; Mohanty et al., 2008). Besides, intestinal digestion and absorption play a crucial role in feed efficiency and fish growth. However, there is a direct relationship between fish growth and digestive enzyme activity (Hidalgo et al., 1999). Our findings indicate that protease and lipase activities significantly increased with dietary lipid levels up to 60 g/kg. However, higher lipid inclusion at 120 g/kg led to reduced growth and inefficient feed utilization in fish. Previous studies have shown that higher dietary lipid levels suppress the activity of protease and lipase enzymes in fish, including *Epinephelus coioides* (Li et al., 2016), *Brachymystax lenok* (Chang et al., 2018), and *Scophthalmus maximus* (Zhang et al., 2022). However, no significant differences in amylase activity were observed among fish groups fed diets with varying lipid levels. These findings are consistent with earlier research on *L. rohita* (Gangadhara et al., 1997), *P. gonionotus* (Mohanty et al., 2008), and *Acipenser baerii* (Ren et al., 2021).

Understanding the molecular processes and pathways involved in PUFA biosynthesis in economically significant freshwater carp species could facilitate enhanced consumption of plant-based lipid sources while maintaining optimal growth and PUFA accumulation in their fillets. LC-PUFAs are synthesized from shorter-chain PUFAs precursors through enzymatic processes facilitated by Fads and Elovl enzymes (Castro et al., 2016). In the current study an attempt has been made to evaluate the mRNA expression levels of essential genes involved in LC-PUFA biosynthesis, including FADS2 and ELOVL5 genes in scale carp fingerlings. The upregulation of all these genes was observed in fish that were fed diets supplemented with different levels of lipids, in comparison to the initial. The highest level of mRNA expression of FADS2 and ELOVL5 genes was observed in the fish group fed with 60.0 g/kg and 80.0 g/kg lipid diets. This could be attributed to the presence of LA and ALA acid in the experimental diets. Previous studies have indicated that higher levels of LA and ALA in the diet lead to the upregulation of desaturases and elongases (Turchini et al., 2006; Li et al., 2008). However, an excess of ALA in the diet may suppress the transcription of the FADS2 gene (Bell et al., 1993). The biosynthesis of LC-PUFAs was suppressed as dietary lipid levels increased beyond 80 g/kg, indicated by the reduced expression of desaturase and elongase genes. This down-regulation might result from elevated LC-PUFAs concentrations in groups fed with higher lipid levels. The present findings are in agreement with the findings of the other workers on freshwater fish species (Izquierdo et al., 2008; Ren et al., 2012; Xu et al., 2014; Nayak et al., 2018; Mir et al., 2020).

5. Conclusion

This study found that providing optimum lipid supplementation greatly increased growth performance in common carp, *C. carpio* var. *communis* fingerlings. Quadratic regression analysis revealed that the ideal amount of lipid for maximal growth was 68.0 g/kg of linseed oil in presence of 20.0 g/kg of cod liver oil, while both lower and excess lipid had a negative impact on growth. Lipid levels significantly altered hemato-biochemical parameters, serum metabolites, intestinal digestive enzyme activities, and expression of FADS2 and ELOVL5 genes. These findings will encourage the development of nutritionally balanced feed for intensive production of common carp, *C. carpio* var. *communis*.

Credit authorship contribution statement

Aamir Majeed: writing – review and editing, writing original draft, investigation, formal analysis. **Imtiaz Ahmad Khan:** writing – review and editing, Conceptualization, Methodology, Supervision, validation **Nazir A. Dar:** Visualization, writing – review and editing, Data curation, Conceptualization.

Declaration of Competing Interest

There are no conflicts of interest in this manuscript.

Acknowledgement

The authors are grateful to the Head of the Department of Zoology for providing necessary laboratory facilities and are also grateful to the Department of Biotechnology (DBT), Government of India, New Delhi for providing financial assistance in the form of a DBT-JRF fellowship to Aamir Majeed (Grant no: DBT/2020/UoK/1458)

Data Availability

The datasets used and/or analyzed during the current study will be available from the corresponding author upon reasonable request

References

1. Ahmad, I., Ahmed, I., Fatma, S., & Peres, H. (2021). Role of branched-chain amino acids on growth, physiology and metabolism of different fish species: A review. *Aquaculture Nutrition*, 27(5), 1270-1289.
<https://doi.org/10.1111/anu.13267>
2. Aoac, Official Methods of Analysis of the Association of Official Analytical Chemists, ACOC, Arlington, VA, USA, 16th edition, 1995.
3. APHA. Standard methods for the examination of water and wastewater (18th ed), APHA, Washington DC (1992) pp: 1268.

4. Bell, J. G., Dick, J. R., McVicar, A. H., Sargent, J. R., & Thompson, K. D. (1993). Dietary sunflower, linseed and fish oils affect phospholipid fatty acid composition, development of cardiac lesions, phospholipase activity and eicosanoid production in Atlantic salmon (*Salmo salar*). *Prostaglandins, Leukotrienes and Essential Fatty Acids*, 49(3), 665-673. [https://doi.org/10.1016/0952-3278\(93\)90075-8](https://doi.org/10.1016/0952-3278(93)90075-8)
5. Bonvini, E., Parma, L., Mandrioli, L., Sirri, R., Brachelente, C., Mongile, F., ... & Bonaldo, A. (2015). Feeding common sole (*Solea solea*) juveniles with increasing dietary lipid levels affects growth, feed utilization and gut health. *Aquaculture*, 449, 87-93. <https://doi.org/10.1016/j.aquaculture.2015.01.013>
6. Borges, P., Oliveira, B., Casal, S., Dias, J., Conceição, L., & Valente, L. M. (2009). Dietary lipid level affects growth performance and nutrient utilisation of Senegalese sole (*Solea senegalensis*) juveniles. *British journal of nutrition*, 102(7), 1007-1014. doi:10.1017/S0007114509345262
7. Castro, L. F. C., Tocher, D. R., & Monroig, O. (2016). Long-chain polyunsaturated fatty acid biosynthesis in chordates: Insights into the evolution of Fads and Elovl gene repertoire. *Progress in lipid research*, 62, 25-40. <https://doi.org/10.1016/j.plipres.2016.01.001>
8. Chang, J., Niu, H. X., Jia, Y. D., Li, S. G., & Xu, G. F. (2018). Effects of dietary lipid levels on growth, feed utilization, digestive tract enzyme activity and lipid deposition of juvenile Manchurian trout, *Brachymystax lenok* (Pallas). *Aquaculture Nutrition*, 24(2), 694-701. <https://doi.org/10.1111/anu.12598>
9. Chatzifotis, S., Panagiotidou, M., Papaioannou, N., Pavlidis, M., Nengas, I., & Mylonas, C. C. (2010). Effect of dietary lipid levels on growth, feed utilization, body composition and serum metabolites of meagre (*Argyrosomus regius*) juveniles. *Aquaculture*, 307(1-2), 65-70. <https://doi.org/10.1016/j.aquaculture.2010.07.002>
10. Chuphal, N., Sardar, P., Sahu, N.P., et al., 2021. Effects of graded dietary lipid levels on growth, feed utilization, body composition and metabolism in juvenile white leg shrimp, *Penaeus vannamei* (Boone, 1931) reared in inland saline water of 10 g/L salinity. *Aquac. Nutr.* 27 (6), 1811–1824. <https://doi.org/10.1111/anu.13319>.
11. Debnath, D., Pal, A. K., Sahu, N. P., Yengkokpam, S., Baruah, K., Choudhury, D., & Venkateshwarlu, G. (2007). Digestive enzymes and metabolic profile of *Labeo rohita* fingerlings fed diets with different crude protein levels. *Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology*, 146(1), 107-114. <https://doi.org/10.1016/j.cbpb.2006.09.008>
12. Du, Z. Y., Liu, Y. J., Tian, L. X., Wang, J. T., Wang, Y., & Liang, G. Y. (2005). Effect of dietary lipid level on growth, feed utilization and body composition by juvenile grass carp (*Ctenopharyngodon idella*). *Aquaculture Nutrition*, 11(2), 139-146. <https://doi.org/10.1111/j.1365-2095.2004.00333.x>
13. El-Kasheif, M., Saad, A., & Ibrahim, S. (2011). Effects of varying levels of fish oil on growth performance, body composition and haematological characteristics of Nile tilapia *Oreochromis niloticus* (L.). *Egyptian Journal of Aquatic Biology and Fisheries*, 15(1), 125-141. <https://doi.org/10.21608/ejabf.2011.2082>
14. Food and Agriculture Organization of the United Nations. (2020). The state of world fisheries and aquaculture 2020: Sustainability in action. Food and Agriculture Organization of the United Nations. <https://doi.org/10.4060/ca9229en>.
15. Furne, M., Hidalgo, M. C., Lopez, A., Garcia-Gallego, M., Morales, A. E., Domezain, A., ... & Sanz, A. (2005). Digestive enzyme activities in Adriatic sturgeon *Acipenser naccarii* and rainbow trout *Oncorhynchus mykiss*. A comparative study. *Aquaculture*, 250(1-2), 391-398. <https://doi.org/10.1016/j.aquaculture.2005.05.017>
16. Gangadhara, B., Nandeesha, M. C., Varghese, T. J., & Keshavanath, P. (1997). Effect of varying protein and lipid levels on the growth of rohu, *Labeo rohita*. *Asian Fisheries Science*, 10, 139-148.
17. Giri, S.S., Sahoo, S.K., Sahu, A.K., Mukhopadhyay, P.K., 2000a. Growth, feed utilization and carcass composition of catfish *Clarias batrachus* (Linn.) fingerlings fed on dried fish and chicken viscera incorporated diets. *Aquaculture research* 31, 767–771. <https://doi.org/10.1046/j.1365-2109.2000.00499.x>
18. Guler, G. O., Kiztanir, B., Aktumsek, A., Cibil, O. B., & Ozparlak, H. (2008). Determination of the seasonal changes on total fatty acid composition and $\omega 3/\omega 6$ ratios of carp (*Cyprinus carpio* L.) muscle lipids in Beysehir Lake (Turkey). *Food Chemistry*, 108(2), 689-694. <https://doi.org/10.1016/j.foodchem.2007.10.080>
19. Guo, J. L., Zhou, Y. L., Zhao, H., Chen, W. Y., Chen, Y. J., & Lin, S. M. (2019). Effect of dietary lipid level on growth, lipid metabolism and oxidative status of largemouth bass, *Micropterus salmoides*. *Aquaculture*, 506, 394-400. <https://doi.org/10.1016/j.aquaculture.2019.04.007>
20. Guo, Z., Zhu, X., Liu, J., Han, D., Yang, Y., Xie, S., & Lan, Z. (2011). Dietary lipid requirement of juvenile hybrid sturgeon, *Acipenser baerii*♀ \times *A. gueldenstaedtii*♂. *Journal of Applied Ichthyology*, 27(2), 743-748. <https://doi.org/10.1111/j.1439-0426.2010.01633.x>

21. Han, T., Li, X., Wang, J., Hu, S., Jiang, Y., & Zhong, X. (2014). Effect of dietary lipid level on growth, feed utilization and body composition of juvenile giant croaker *Nibea japonica*. *Aquaculture*, 434, 145-150. <https://doi.org/10.1016/j.aquaculture.2014.08.012>

22. Hassan, A., Ahmed, I., & Wani, G. B. (2022). Effect of Supplementation of Vitamin A on Growth, Haemato-Biochemical Composition, and Antioxidant Ability in *Cyprinus carpio* var. *communis*. *Aquaculture Nutrition*, 2022(1), 8446092. <https://doi.org/10.1155/2022/8446092>

23. Hidalgo, M. C., Urea, E., & Sanz, A. (1999). Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. *Aquaculture*, 170(3-4), 267-283. [https://doi.org/10.1016/S0044-8486\(98\)00413-X](https://doi.org/10.1016/S0044-8486(98)00413-X)

24. Huang, Y., Wen, X., Li, S., Li, W., & Zhu, D. (2016). Effects of dietary lipid levels on growth, feed utilization, body composition, fatty acid profiles and antioxidant parameters of juvenile chu's croaker *Nibea coibor*. *Aquaculture International*, 24, 1229-1245. <https://doi.org/10.1007/s10499-016-9980-5>

25. Izquierdo, M. S., Robaina, L., Juárez-Carrillo, E., Oliva, V., Hernández-Cruz, C. M., & Afonso, J. M. (2008). Regulation of growth, fatty acid composition and delta 6 desaturase expression by dietary lipids in gilthead seabream larvae (*Sparus aurata*). *Fish Physiology and Biochemistry*, 34, 117-127. <https://doi.org/10.1007/s10695-007-9152-7>

26. K. N., Mohanty, S. N., Jena, J. K., & Sahu, N. P. (2008). Optimal dietary lipid level of silver barb, *Puntius gonionotus* fingerlings in relation to growth, nutrient retention and digestibility, muscle nucleic acid content and digestive enzyme activity. *Aquaculture Nutrition*, 14(4), 350-359.

27. Kader, M. A., Koshio, S., Ishikawa, M., Yokoyama, S., & Bulbul, M. (2010). Supplemental effects of some crude ingredients in improving nutritive values of low fishmeal diets for red sea bream, *Pagrus major*. *Aquaculture*, 308(3-4), 136-144. <https://doi.org/10.1016/j.aquaculture.2010.07.037>

28. Kikuchi, K., Furuta, T., Iwata, N., Onuki, K., & Noguchi, T. (2009). Effect of dietary lipid levels on the growth, feed utilization, body composition and blood characteristics of tiger puffer *Takifugu rubripes*. *Aquaculture*, 298(1-2), 111-117. <https://doi.org/10.1016/j.aquaculture.2009.10.026>

29. Leaver, M. J., Bautista, J. M., Björnsson, B. T., Jönsson, E., Krey, G., Tocher, D. R., & Torstensen, B. E. (2008). Towards fish lipid nutrigenomics: current state and prospects for fin-fish aquaculture. *Reviews in Fisheries Science*, 16(sup1), 73-94. <https://doi.org/10.1080/10641260802325278>

30. Li, H., Isaac, N., Shen, K., Cheng, J., Xiang, J., Bao, L., & Zhang, J. (2024). Dietary lipid-induced changes in antioxidant status, lipid metabolism and flesh quality of juvenile rice flower carp (*Cyprinus carpio*). *Aquaculture Reports*, 35, 101967. <https://doi.org/10.1016/j.aqrep.2024.101967>

31. Li, S., Mai, K., Xu, W., Yuan, Y., Zhang, Y., Zhou, H., & Ai, Q. (2016). Effects of dietary lipid level on growth, fatty acid composition, digestive enzymes and expression of some lipid metabolism related genes of orange-spotted grouper larvae (*Epinephelus coioides* H.). *Aquaculture Research*, 47(8), 2481-2495. <https://doi.org/10.1111/are.12697>

32. Li, X., Zheng, S., Ma, X., Cheng, K., & Wu, G. (2020). Effects of dietary protein and lipid levels on the growth performance, feed utilization, and liver histology of largemouth bass (*Micropterus salmoides*). *Amino Acids*, 52(6), 1043-1061. <https://doi.org/10.1007/s00726-020-02874-9>

33. Li, X., Zheng, S., Ma, X., Cheng, K., & Wu, G. (2021). Use of alternative protein sources for fishmeal replacement in the diet of largemouth bass (*Micropterus salmoides*). Part I: effects of poultry by-product meal and soybean meal on growth, feed utilization, and health. *Amino Acids*, 53(1), 33-47. <https://doi.org/10.1007/s00726-020-02920-6>

34. Li, Y. Y., Hu, C. B., Zheng, Y. J., Xia, X. A., Xu, W. J., Wang, S. Q., & Huang, J. H. (2008). The effects of dietary fatty acids on liver fatty acid composition and Δ6-desaturase expression differ with ambient salinities in *Siganus canaliculatus*. *Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology*, 151(2), 183-190. <https://doi.org/10.1016/j.cbb.2008.06.013>

35. Li, Y., Liang, X., Zhang, Y., & Gao, J. (2016). Effects of different dietary soybean oil levels on growth, lipid deposition, tissues fatty acid composition and hepatic lipid metabolism related gene expressions in blunt snout bream (*Megalobrama amblycephala*) juvenile. *Aquaculture*, 451, 16-23. <https://doi.org/10.1016/j.aquaculture.2015.08.028>

36. Lim, C., Yildirim-Aksoy, M., Li, M. H., Welker, T. L., & Klesius, P. H. (2009). Influence of dietary levels of lipid and vitamin E on growth and resistance of Nile tilapia to *Streptococcus iniae* challenge. *Aquaculture*, 298(1-2), 76-82. <https://doi.org/10.1016/j.aquaculture.2009.09.025>

37. Livak, K.J. and Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2- $\Delta\Delta CT$ method. *methods*, 25(4), pp.402-408. <https://doi.org/10.1006/meth.2001.1262>

38. Maiti, S., Saha, S., Jana, P., Chowdhury, A., Khatua, S., & Ghosh, T. K. (2023). Effect of dietary Andrographis paniculata leaf extract on growth, immunity, and disease resistance against *Aeromonas hydrophila* in *Pangasianodon hypophthalmus*. *Journal of Applied Aquaculture*, 35(2), 305-329. <https://doi.org/10.1080/10454438.2021.1959861>

39. Marrero, M., Monroig, Ó., Navarro, J. C., Ribes-Navarro, A., Pérez, J. A., Galindo, A., & Rodríguez, C. (2022). Metabolic and molecular evidence for long-chain PUFA biosynthesis capacity in the grass carp, *Ctenopharyngodon idella*. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 270, 111232. <https://doi.org/10.1016/j.cbpa.2022.111232>

40. Moore, S. and Stein, W.H., 1948. Photometric ninhydrin method for use in the chromatography of amino acids.

41. Monroig, Ó., Li, Y. and Tocher, D.R., 2011. Delta-8 desaturation activity varies among fatty acyl desaturases of teleost fish: high activity in delta-6 desaturases of marine species. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 159(4), pp.206-213. <https://doi.org/10.1016/j.cbpb.2011.04.007>

42. Monroig, Ó., Rotllant, J., Sánchez, E., Cerdá-Reverter, J.M. and Tocher, D.R., 2009. Expression of long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis genes during zebrafish *Danio rerio* early embryogenesis. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1791(11), pp.1093-1101. <https://doi.org/10.1016/j.bbapli.2009.07.002>

43. Mir, I. N., Srivastava, P. P., Bhat, I. A., Dar, J. Y., & Agarwal, D. (2020). Expression profiling of lipolytic and long-chain fatty acid biosynthesis genes in catfish larvae fed with graded lipid levels. Frontiers in Marine Science, 7, 561402. <https://doi.org/10.3389/fmars.2020.561402>

44. Metcalfe LD, Schmitz AA, Pelka JR (1966) Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal Chem 38(3):514–515. <https://doi.org/10.1021/ac60235a044>

45. Nayak, M., Saha, A., Pradhan, A., Samanta, M., Mohanty, T.K. and Giri, S.S., 2018. Influence of dietary lipid levels on growth, nutrient utilization, tissue fatty acid composition and desaturase gene expression in silver barb (*Puntius gonionotous*) fingerlings. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 226, pp.18-25. <https://doi.org/10.1016/j.cbpb.2018.08.005>

46. Njinkoue, J. M., Gouado, I., Tchoumboognang, F., Ngueguim, J. Y., Ndinteh, D. T., Fomogne-Fodjo, C. Y., & Schweigert, F. J. (2016). Proximate composition, mineral content and fatty acid profile of two marine fishes from Cameroonian coast: *Pseudotolithus typus* (Bleeker, 1863) and *Pseudotolithus elongatus* (Bowdich, 1825). NFS journal, 4, 27-31. <https://doi.org/10.1016/j.nfs.2016.07.002>

47. Pang, G., Li, Y., Zhang, Z., Sun, B., Song, F., Zheng, S., ... & Li, X. (2024). Evaluation of the effects of diets containing different lipid levels for juvenile yellowfin seabream *Acanthopagrus latus*. Aquaculture Reports, 34, 101898. <https://doi.org/10.1016/j.aqrep.2023.101898>

48. Paul, M., Sardar, P., Sahu, N. P., Jana, P., Deo, A. D., Harikrishna, V., ... & Krishna, G. (2022). Effect of dietary lipid level on growth performance, body composition, and physiometabolic responses of genetically improved farmed tilapia (GIFT) juveniles reared in inland ground saline water. Aquaculture Nutrition, 2022(1), 5345479. <https://doi.org/10.1155/2022/5345479>

49. Peng, S.M., Zhang, C.J., Gao, Q.X., et al., 2017. Growth performance and metabolic response of juvenile grouper (*Epinephelus moara*) fed low dietary protein and high lipid levels. J. Appl. Ichthyol. 33 (4), 790–796. <https://doi.org/10.1111/jai.13361>

50. Pereira, S. L., Leonard, A. E., & Mukerji, P. (2003). Recent advances in the study of fatty acid desaturases from animals and lower eukaryotes. Prostaglandins, Leukotrienes and Essential Fatty Acids, 68(2), 97-106. [https://doi.org/10.1016/S0952-3278\(02\)00259-4](https://doi.org/10.1016/S0952-3278(02)00259-4).

51. Pérez, J. A., Rodríguez, C., Bolaños, A., Cejas, J. R., & Lorenzo, A. (2014). Beef tallow as an alternative to fish oil in diets for gilthead sea bream (*Sparus aurata*) juveniles: Effects on fish performance, tissue fatty acid composition, health and flesh nutritional value. European Journal of Lipid Science and Technology, 116(5), 571-583. <https://doi.org/10.1002/ejlt.201300457>

52. Rasmussen, R. S., Ostenfeld, T. H., & McLean, E. (2000). Growth and feed utilisation of rainbow trout subjected to changes in feed lipid concentrations. Aquaculture International, 8, 531-542. <https://doi.org/10.1023/A:1009291227550>

53. Ren, H. T., Yu, J. H., Xu, P., & Tang, Y. K. (2012). Influence of dietary fatty acids on muscle fatty acid composition and expression levels of $\Delta 6$ desaturase-like and Elovl5-like elongase in common carp (*Cyprinus carpio* var. *Jian*). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 163(2), 184-192. <https://doi.org/10.1016/j.cbpb.2012.05.016>

54. Ren, Y., Wei, S., Yu, H., Xing, W., Xu, G., Li, T., & Luo, L. (2021). Dietary lipid levels affect growth, feed utilization, lipid deposition, health status and digestive enzyme activities of juvenile Siberian sturgeon, *Acipenser baerii*. Aquaculture Nutrition, 27(6), 2019-2028. <https://doi.org/10.1111/anu.13337>

55. Sáez-Royuela, M., Casado, M., Celada, J. D., Carral, J. M., & González-Rodríguez, A. (2015). Effect of dietary lipid level on survival, growth performance and body composition of juvenile tench (*Tinca tinca* L.) fed practical diets. Aquaculture, 439, 14-19. <https://doi.org/10.1016/j.aquaculture.2015.01.017>

56. Sargent, J. R., Tocher, D. R., & Bell, J. G. (2002). The Lipids (in Halver, JE & Hardy, RW (Eds.), Fish Nutrition.

57. Sargent, J.R., Henderson, R.J., Tocher, D.R., 1989. The lipids. In: Halver, J.E. (Ed.), Fish Nutrition. Academic Press, London, pp. 154–209.

58. Shearer, K. D. (1994). Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. *Aquaculture*, 119(1), 63-88. [https://doi.org/10.1016/0044-8486\(94\)90444-8](https://doi.org/10.1016/0044-8486(94)90444-8)

59. Siddiqua, K. S., & Khan, M. A. (2022). Effects of dietary lipid levels on growth, feed utilization, RNA/DNA ratio, digestive tract enzyme activity, non-specific immune response and optimum inclusion in feeds for fingerlings of rohu, *Labeo rohita* (Hamilton). *Aquaculture*, 554, 738114. <https://doi.org/10.1016/j.aquaculture.2022.738114>

60. Snedecor, G.W. and Cochran, W.G., 1967. Iowa State University Press. Ames, Iowa, pp.290-327.

61. Sokal, R.R. and Rohlf, F.J., 1981. Biometry 2nd ed WH Freeman and Co. New York, NY, 859

62. Song, L. P., An, L., Zhu, Y. A., Li, X., & Wang, A. Y. (2009). Effects of dietary lipids on growth and feed utilization of jade perch, *Scortum barcoo*. *Journal of the World Aquaculture Society*, 40(2), 266-273. <https://doi.org/10.1111/j.1749-7345.2009.00249.x>

63. Talukdar, A., Deo, A. D., Sahu, N. P., Sardar, P., Aklakur, M., Prakash, S., ... & Kumar, S. (2020). Effects of dietary protein on growth performance, nutrient utilization, digestive enzymes and physiological status of grey mullet, *Mugil cephalus* L. fingerlings reared in inland saline water. *Aquaculture Nutrition*, 26(3), 921-935. <https://doi.org/10.1111/anu.13050>

64. Tenenbaum, A., Klempfner, R., & Fisman, E. Z. (2014). Hypertriglyceridemia: a too long unfairly neglected major cardiovascular risk factor. *Cardiovascular diabetology*, 13, 1-10. <https://doi.org/10.1186/s12933-014-0159-y>

65. Torstensen, B. E., Frøyland, L., & Lie, Ø. (2004). Replacing dietary fish oil with increasing levels of rapeseed oil and olive oil—effects on Atlantic salmon (*Salmo salar* L.) tissue and lipoprotein lipid composition and lipogenic enzyme activities. *Aquaculture nutrition*, 10(3), 175-192. <https://doi.org/10.1111/j.1365-2095.2004.00289.x>

66. Turchini, G. M., Francis, D. S., & De Silva, S. S. (2006). Fatty acid metabolism in the freshwater fish Murray cod (*Maccullochella peelii peelii*) deduced by the whole-body fatty acid balance method. *Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology*, 144(1), 110-118. <https://doi.org/10.1016/j.cbpb.2006.01.013>

67. Varghese, T., Kumar, V. R., Gopan, A., Valappil, R. K., Sajina, K. A., Mishal, P., & Pal, A. K. (2020). Dietary arginine modulates nonspecific immune responses in Indian Major Carp, *Cirrhinus mrigala* exposed to hypoxia. *Aquaculture*, 529, 735613. <https://doi.org/10.1016/j.aquaculture.2020.735613>

68. Wang, J.T., Liu, T., Zheng, P.Q., et al., 2021. Effect of dietary lipid levels on growth performance, body composition, and feed utilization of juvenile spotted knifejaw *Oplegnathus punctatus*. *Aquac. Rep.* 21 (7), 100797. <https://doi.org/10.1016/j.aqrep.2021.100797>.

69. Wang, J.T., Liu, Y.J., Tian, L.X., et al., 2005. Effect of dietary lipid level on growth performance, lipid deposition, hepatic lipogenesis in juvenile cobia (*Rachycentron canadum*). *Aquaculture* 249 (1-4), 439–447. <https://doi.org/10.1016/j.aquaculture.2005.04.038>.

70. Wang, L. N., Liu, W. B., Lu, K. L., Xu, W. N., Cai, D. S., Zhang, C. N., & Qian, Y. (2014). Effects of dietary carbohydrate/lipid ratios on non-specific immune responses, oxidative status and liver histology of juvenile yellow catfish *Pelteobagrus fulvidraco*. *Aquaculture*, 426, 41-48. <https://doi.org/10.1016/j.aquaculture.2014.01.022>

71. Xie, R.T., Amenyogbe, E., Chen, G., et al., 2021. Effects of feed fat level on growth performance, body composition and serum biochemical indices of hybrid grouper ($\text{♀}Epinephelus fuscoguttatus \times \text{♂}Epinephelus polyphekadion$). *Aquaculture* 530, 735813. <https://doi.org/10.1016/j.aquaculture.2020.735813>.

72. Xu, H., Dong, X., Ai, Q., Mai, K., Xu, W., Zhang, Y., & Zuo, R. (2014). Regulation of tissue LC-PUFA contents, Δ6 fatty acyl desaturase (FADS2) gene expression and the methylation of the putative FADS2 gene promoter by different dietary fatty acid profiles in Japanese seabass (*Lateolabrax japonicus*). *Plos one*, 9(1), e87726. <https://doi.org/10.1371/journal.pone.0087726>

73. Xu, JH., Qin, J., Yan, BL. et al. Effects of dietary lipid levels on growth performance, feed utilization and fatty acid composition of juvenile Japanese seabass (*Lateolabrax japonicus*) reared in seawater. *Aquacult Int* 19, 79–89 (2011). <https://doi.org/10.1007/s10499-010-9342-7>.

74. Xun, P., Lin, H., Wang, R., Yu, W., Zhou, C., Tan, X., ... & Yu, W. (2021). Effects of dietary lipid levels on growth performance, plasma biochemistry, lipid metabolism and intestinal microbiota of juvenile golden pompano (*Trachinotus ovatus*). *Aquaculture Nutrition*, 27(5), 1683-1698. <https://doi.org/10.1111/anu.13307>

- 75. Yong, A.S.K., Ooi, S., Shapawi, R., Biswas, A.K., & Kenji, T. (2015). Effects of Dietary Lipid Increments on Growth Performance, Feed Utilization, Carcass Composition and Intraperitoneal Fat of Marble Goby, *Oxyeleotris marmorata*, Juveniles. Turkish Journal of Fisheries and Aquatic Sciences, 15, 653-660. <http://doi.org/10.4194/1303-2712-v15-3-10>.
- 76. Yousefi, M., Vatnikov, Y. A., Kulikov, E. V., Plushikov, V. G., Drukovsky, S. G., Hoseinifar, S. H., & Van Doan, H. (2020). The protective effects of dietary garlic on common carp (*Cyprinus carpio*) exposed to ambient ammonia toxicity. Aquaculture, 526, 735400. <https://doi.org/10.1016/j.aquaculture.2020.735400>
- 77. Yu, J., Li, S., Chang, J., Niu, H., Hu, Z., & Han, Y. (2019). Effect of variation in the dietary ratio of linseed oil to fish oil on growth, body composition, tissues fatty acid composition, flesh nutritional value and immune indices in Manchurian trout, *Brachymystax lenok*. Aquaculture Nutrition, 25(2), 377-387. <https://doi.org/10.1111/anu.12863>
- 78. Zeitoun, I.H., Ullrey, D.E., Magee, W.T., Gill, J.L. and Bergen, W.G., 1976. Quantifying nutrient requirements of fish. Journal of the Fisheries Board of Canada, 33(1), pp.167-172. <https://doi.org/10.1139/f76-019>
- 79. Zhang, W., Dan, Z., Zhuang, Y., Zheng, J., Gong, Y., Liu, Y., ... & Ai, Q. (2022). Effects of dietary lipid levels on growth, digestive enzyme activities, antioxidant capacity, and lipid metabolism in turbot (*Scophthalmus maximus* L.) at three different stages. Aquaculture Nutrition, 2022(1), 1042263. <https://doi.org/10.1155/2022/1042263>